{"title":"通过顺序和隧道途径在桥接铁磁链上进行长程磁子传输","authors":"Elmar Petrov","doi":"10.1063/5.0189726","DOIUrl":null,"url":null,"abstract":"A theoretical study of the mechanism of magnon transfer through a ferromagnetic chain (F) has been carried out from magnetically ordered contact A to similar contact B (AFB system). The regime of spin excitation transport is considered, when the inner section of the chain with identical paramagnetic units acts as a bridge for magnon transfer and thereby is poorly populated by magnons. In this case, the magnon transfer can be carried out by sequential hopping the localized magnon across all units of the chain or/and tunneling the magnon between the terminal units of the chain by a “superexchange” mechanism. The latter involves in the tunneling route the virtual delocalized magnons. The analytical dependence of the corresponding transfer rates on the number of paramagnetic bridge units is found and the magnon analog of the Seebeck and Peltier effects is predicted.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range magnon transfer across a bridging ferromagnetic chain via sequential and tunnel routes\",\"authors\":\"Elmar Petrov\",\"doi\":\"10.1063/5.0189726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical study of the mechanism of magnon transfer through a ferromagnetic chain (F) has been carried out from magnetically ordered contact A to similar contact B (AFB system). The regime of spin excitation transport is considered, when the inner section of the chain with identical paramagnetic units acts as a bridge for magnon transfer and thereby is poorly populated by magnons. In this case, the magnon transfer can be carried out by sequential hopping the localized magnon across all units of the chain or/and tunneling the magnon between the terminal units of the chain by a “superexchange” mechanism. The latter involves in the tunneling route the virtual delocalized magnons. The analytical dependence of the corresponding transfer rates on the number of paramagnetic bridge units is found and the magnon analog of the Seebeck and Peltier effects is predicted.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0189726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0189726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们对从磁有序触点 A 到类似触点 B(AFB 系统)的磁子通过铁磁链(F)传输的机制进行了理论研究。研究考虑了自旋激发传输机制,即具有相同顺磁单元的链内部分作为磁子传输的桥梁,因此磁子填充较少。在这种情况下,磁子传输可以通过局部磁子在链的所有单元间的顺序跳跃或/和通过 "超交换 "机制在链的终端单元间的隧道传输来实现。后者在隧穿过程中涉及虚拟脱局域磁子。研究发现了相应传输速率对顺磁桥单元数量的分析依赖性,并预测了塞贝克效应和珀尔帖效应的磁子类似物。
Long-range magnon transfer across a bridging ferromagnetic chain via sequential and tunnel routes
A theoretical study of the mechanism of magnon transfer through a ferromagnetic chain (F) has been carried out from magnetically ordered contact A to similar contact B (AFB system). The regime of spin excitation transport is considered, when the inner section of the chain with identical paramagnetic units acts as a bridge for magnon transfer and thereby is poorly populated by magnons. In this case, the magnon transfer can be carried out by sequential hopping the localized magnon across all units of the chain or/and tunneling the magnon between the terminal units of the chain by a “superexchange” mechanism. The latter involves in the tunneling route the virtual delocalized magnons. The analytical dependence of the corresponding transfer rates on the number of paramagnetic bridge units is found and the magnon analog of the Seebeck and Peltier effects is predicted.