带风电场的多终端 VSC-HVDC 系统的自适应分层分阶滑动模式控制策略

Q3 Computer Science
S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena
{"title":"带风电场的多终端 VSC-HVDC 系统的自适应分层分阶滑动模式控制策略","authors":"S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena","doi":"10.3311/ppee.22147","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Hierarchical Fractional-Order Sliding Mode Control Strategy for multi-terminal VSC-HVDC System with Wind Farm\",\"authors\":\"S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena\",\"doi\":\"10.3311/ppee.22147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.22147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.22147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种自适应分层分数阶滑动模式控制器(AHFSMC),适用于与风电场(WF)系统集成的基于多端电压源变换器(VSC)的高压直流(HVDC)。与风电场相连的多端电压源换流器-高压直流(MtVDC)因其众多优点而受到电力行业的广泛关注。另一方面,MtVDC 的有效性取决于所使用的控制方案。为了实现这一目标,我们采用了分数阶微积分的分层滑模控制方法。为确保滑动条件,需要确定控制信号。根据适当的适应方法调整控制器参数,以增强所提议控制器与系统不确定性系数相比的鲁棒性。本文采用基于 Lyapunov 的适当方法来实现自适应规则。本文讨论了在 MtVDC 系统中设计附加控制器以抑制机电振荡的方案,机电振荡是目前正在积极研究的 HVDC 的几个特征之一。数值模拟验证了所提控制策略的可行性和效率。这种新颖的方法可在各种运行条件下利用 MtVDC 的动态特性提升系统稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Hierarchical Fractional-Order Sliding Mode Control Strategy for multi-terminal VSC-HVDC System with Wind Farm
In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica polytechnica Electrical engineering and computer science
Periodica polytechnica Electrical engineering and computer science Engineering-Electrical and Electronic Engineering
CiteScore
2.60
自引率
0.00%
发文量
36
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信