S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena
{"title":"带风电场的多终端 VSC-HVDC 系统的自适应分层分阶滑动模式控制策略","authors":"S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena","doi":"10.3311/ppee.22147","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Hierarchical Fractional-Order Sliding Mode Control Strategy for multi-terminal VSC-HVDC System with Wind Farm\",\"authors\":\"S. S. Biswal, D. Swain, P. Rout, Prakash Kumar Ray, R. K. Jena\",\"doi\":\"10.3311/ppee.22147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.22147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.22147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Adaptive Hierarchical Fractional-Order Sliding Mode Control Strategy for multi-terminal VSC-HVDC System with Wind Farm
In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method by fractional-order calculus is used. To ensure the sliding condition, the control signal is determined. The controller parameters are adjusted according to a suitable adaptation method to enhance the proposed controller’s robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the dynamic properties of the MtVDC in a variety of operative conditions.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).