F. Borszcz, Artur Ferreira Tramontin, R. D. de Lucas, Vitor Pereira Costa
{"title":"5 分钟计时单车测试是最大摄氧量的有效预测指标吗?外部交叉验证研究","authors":"F. Borszcz, Artur Ferreira Tramontin, R. D. de Lucas, Vitor Pereira Costa","doi":"10.1123/ijspp.2023-0330","DOIUrl":null,"url":null,"abstract":"PURPOSE\nThis study aimed to cross-validate a recently proposed equation for the prediction of maximal oxygen uptake (V˙O2max) in cycling exercise by using the average power output normalized by the body mass from a 5-minute time trial (RPO5-min) as the independent variable. Further, the study aimed to update the predictive equation using Bayesian informative prior distributions and meta-analysis.\n\n\nMETHODS\nOn different days, 49 male cyclists performed an incremental graded exercise test until exhaustion and a 5-minute time trial on a stationary cycle ergometer. We compared the actual V˙O2max with the predicted value obtained from the RPO5-min, using a modified Bayesian Bland-Altman agreement analysis. In addition, this study updated the data on the linear regression between V˙O2max and RPO5-min, by incorporating information from a previous study as a Bayesian informative prior distribution or via meta-analysis.\n\n\nRESULTS\nOn average, the predicted V˙O2max using RPO5-min underestimated the actual V˙O2max by -6.6 mL·kg-1·min-1 (95% credible interval, -8.6 to -4.7 mL·kg-1·min-1). The lower and upper 95% limits of agreement were -17.2 (-22.7 to -12.3) and 3.8 (-1.0 to 9.5) mL·kg-1·min-1, respectively. When the current study's data were analyzed using the previously published data as a Bayesian informative prior distribution, the accuracy of predicting sample means was found to be better when compared with the data combined via meta-analyses.\n\n\nCONCLUSIONS\nThe proposed equation presented systematic bias in our sample, in which the prediction underestimated the actual V˙O2max. We provide an updated equation using the previous one as the prior distribution, which could be generalized to a greater audience of cyclists.","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is the 5-Minute Time-Trial Cycling Test a Valid Predictor of Maximal Oxygen Uptake? An External Cross-Validation Study.\",\"authors\":\"F. Borszcz, Artur Ferreira Tramontin, R. D. de Lucas, Vitor Pereira Costa\",\"doi\":\"10.1123/ijspp.2023-0330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE\\nThis study aimed to cross-validate a recently proposed equation for the prediction of maximal oxygen uptake (V˙O2max) in cycling exercise by using the average power output normalized by the body mass from a 5-minute time trial (RPO5-min) as the independent variable. Further, the study aimed to update the predictive equation using Bayesian informative prior distributions and meta-analysis.\\n\\n\\nMETHODS\\nOn different days, 49 male cyclists performed an incremental graded exercise test until exhaustion and a 5-minute time trial on a stationary cycle ergometer. We compared the actual V˙O2max with the predicted value obtained from the RPO5-min, using a modified Bayesian Bland-Altman agreement analysis. In addition, this study updated the data on the linear regression between V˙O2max and RPO5-min, by incorporating information from a previous study as a Bayesian informative prior distribution or via meta-analysis.\\n\\n\\nRESULTS\\nOn average, the predicted V˙O2max using RPO5-min underestimated the actual V˙O2max by -6.6 mL·kg-1·min-1 (95% credible interval, -8.6 to -4.7 mL·kg-1·min-1). The lower and upper 95% limits of agreement were -17.2 (-22.7 to -12.3) and 3.8 (-1.0 to 9.5) mL·kg-1·min-1, respectively. When the current study's data were analyzed using the previously published data as a Bayesian informative prior distribution, the accuracy of predicting sample means was found to be better when compared with the data combined via meta-analyses.\\n\\n\\nCONCLUSIONS\\nThe proposed equation presented systematic bias in our sample, in which the prediction underestimated the actual V˙O2max. We provide an updated equation using the previous one as the prior distribution, which could be generalized to a greater audience of cyclists.\",\"PeriodicalId\":14295,\"journal\":{\"name\":\"International journal of sports physiology and performance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sports physiology and performance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/ijspp.2023-0330\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2023-0330","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Is the 5-Minute Time-Trial Cycling Test a Valid Predictor of Maximal Oxygen Uptake? An External Cross-Validation Study.
PURPOSE
This study aimed to cross-validate a recently proposed equation for the prediction of maximal oxygen uptake (V˙O2max) in cycling exercise by using the average power output normalized by the body mass from a 5-minute time trial (RPO5-min) as the independent variable. Further, the study aimed to update the predictive equation using Bayesian informative prior distributions and meta-analysis.
METHODS
On different days, 49 male cyclists performed an incremental graded exercise test until exhaustion and a 5-minute time trial on a stationary cycle ergometer. We compared the actual V˙O2max with the predicted value obtained from the RPO5-min, using a modified Bayesian Bland-Altman agreement analysis. In addition, this study updated the data on the linear regression between V˙O2max and RPO5-min, by incorporating information from a previous study as a Bayesian informative prior distribution or via meta-analysis.
RESULTS
On average, the predicted V˙O2max using RPO5-min underestimated the actual V˙O2max by -6.6 mL·kg-1·min-1 (95% credible interval, -8.6 to -4.7 mL·kg-1·min-1). The lower and upper 95% limits of agreement were -17.2 (-22.7 to -12.3) and 3.8 (-1.0 to 9.5) mL·kg-1·min-1, respectively. When the current study's data were analyzed using the previously published data as a Bayesian informative prior distribution, the accuracy of predicting sample means was found to be better when compared with the data combined via meta-analyses.
CONCLUSIONS
The proposed equation presented systematic bias in our sample, in which the prediction underestimated the actual V˙O2max. We provide an updated equation using the previous one as the prior distribution, which could be generalized to a greater audience of cyclists.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.