{"title":"元学习增强型贸易预测:利用高效多商品 STL 分解的神经框架","authors":"Bohan Ma, Yushan Xue, Jing Chen, Fangfang Sun","doi":"10.1155/2024/6176898","DOIUrl":null,"url":null,"abstract":"<p>In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Learning Enhanced Trade Forecasting: A Neural Framework Leveraging Efficient Multicommodity STL Decomposition\",\"authors\":\"Bohan Ma, Yushan Xue, Jing Chen, Fangfang Sun\",\"doi\":\"10.1155/2024/6176898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6176898\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6176898","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.