元学习增强型贸易预测:利用高效多商品 STL 分解的神经框架

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bohan Ma, Yushan Xue, Jing Chen, Fangfang Sun
{"title":"元学习增强型贸易预测:利用高效多商品 STL 分解的神经框架","authors":"Bohan Ma,&nbsp;Yushan Xue,&nbsp;Jing Chen,&nbsp;Fangfang Sun","doi":"10.1155/2024/6176898","DOIUrl":null,"url":null,"abstract":"<p>In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Learning Enhanced Trade Forecasting: A Neural Framework Leveraging Efficient Multicommodity STL Decomposition\",\"authors\":\"Bohan Ma,&nbsp;Yushan Xue,&nbsp;Jing Chen,&nbsp;Fangfang Sun\",\"doi\":\"10.1155/2024/6176898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6176898\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6176898","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在动态的全球贸易环境中,准确预测各种商品的贸易价值面临着不可预测的经济和政治变化的挑战。本研究介绍了 Meta-TFSTL 框架,这是一个创新的神经模型,它将元学习增强型贸易预测与高效的多商品 STL 分解相结合,从而巧妙地驾驭复杂的预测。我们的方法从 STL 分解开始,将贸易价值序列划分为季节、趋势和残差元素,并通过 Ljung-Box 检验确定潜在的 10 个月经济周期。该模型采用双通道时空编码器处理这些成分,确保全面掌握时间相关性。通过利用相关矩阵和图嵌入构建空间和时间图,并在解码阶段引入融合注意力和多任务处理策略,Meta-TFSTL 在性能上超越了基准模型。此外,整合元学习和微调技术还增强了进出口贸易预测的共享知识。最终,我们的研究大大提高了全球经济动荡形势下贸易预测的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Learning Enhanced Trade Forecasting: A Neural Framework Leveraging Efficient Multicommodity STL Decomposition

In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信