整数环 modulo n 的 cozero 除数图的独立支配多项式

IF 1 Q1 MATHEMATICS
B. Rather
{"title":"整数环 modulo n 的 cozero 除数图的独立支配多项式","authors":"B. Rather","doi":"10.47443/dml.2023.215","DOIUrl":null,"url":null,"abstract":"The cozero divisor graph Γ (cid:48) ( R ) of a commutative ring R is a simple graph whose vertex set is the set of non-zero non-unit elements of R such that two distinct vertices x and y of Γ (cid:48) ( R ) are adjacent if and only if x / ∈ Ry and y / ∈ Rx , where Rx is the ideal generated by x . In this article, the independent domination polynomial of Γ (cid:48) ( Z n ) is found for n ∈ { p 1 p 2 , p 1 p 2 p 3 , p n 1 1 p 2 } , where p i ’s are primes, n 1 is an integer greater than 1 , and Z n is the integer modulo ring. It is shown that the independent domination polynomial of Γ (cid:48) ( Z p 1 p 2 ) has only one real root. It is also proved that these polynomials are not unimodal but are log-concave under certain conditions.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent domination polynomial for the cozero divisor graph of the ring of integers modulo n\",\"authors\":\"B. Rather\",\"doi\":\"10.47443/dml.2023.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cozero divisor graph Γ (cid:48) ( R ) of a commutative ring R is a simple graph whose vertex set is the set of non-zero non-unit elements of R such that two distinct vertices x and y of Γ (cid:48) ( R ) are adjacent if and only if x / ∈ Ry and y / ∈ Rx , where Rx is the ideal generated by x . In this article, the independent domination polynomial of Γ (cid:48) ( Z n ) is found for n ∈ { p 1 p 2 , p 1 p 2 p 3 , p n 1 1 p 2 } , where p i ’s are primes, n 1 is an integer greater than 1 , and Z n is the integer modulo ring. It is shown that the independent domination polynomial of Γ (cid:48) ( Z p 1 p 2 ) has only one real root. It is also proved that these polynomials are not unimodal but are log-concave under certain conditions.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

交换环 R 的共零除数图 Γ (cid:48) ( R ) 是一个简单图,其顶点集是 R 的非零非单位元素集,当且仅当 x /∈Ry 和 y /∈Rx 时,Γ (cid:48) ( R ) 的两个不同顶点 x 和 y 相邻,其中 Rx 是由 x 生成的理想。本文将为 n∈ { p 1 p 2 , p 1 p 2 p 3 , p n 1 1 p 2 } 求出 Γ (cid:48) ( Z n ) 的独立支配多项式。其中 p i 是素数,n 1 是大于 1 的整数,Z n 是整数模环。证明了Γ (cid:48) ( Z p 1 p 2 ) 的独立支配多项式只有一个实数根。还证明了这些多项式不是单模态的,但在某些条件下是对数凹的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent domination polynomial for the cozero divisor graph of the ring of integers modulo n
The cozero divisor graph Γ (cid:48) ( R ) of a commutative ring R is a simple graph whose vertex set is the set of non-zero non-unit elements of R such that two distinct vertices x and y of Γ (cid:48) ( R ) are adjacent if and only if x / ∈ Ry and y / ∈ Rx , where Rx is the ideal generated by x . In this article, the independent domination polynomial of Γ (cid:48) ( Z n ) is found for n ∈ { p 1 p 2 , p 1 p 2 p 3 , p n 1 1 p 2 } , where p i ’s are primes, n 1 is an integer greater than 1 , and Z n is the integer modulo ring. It is shown that the independent domination polynomial of Γ (cid:48) ( Z p 1 p 2 ) has only one real root. It is also proved that these polynomials are not unimodal but are log-concave under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信