{"title":"has-miR-134-5p 通过调节 BDNF/ERK 信号通路抑制胶质瘤细胞的增殖和迁移","authors":"Zeshang Guo, Pingxv An, Xinyu Hong","doi":"10.18632/aging.205720","DOIUrl":null,"url":null,"abstract":"Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA’s binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays. Scratch tests and Western blotting demonstrated hsa-miR-134-5p’s modulation of the BDNF/ERK pathway and associated decrease in MMP2/9 protein levels. Flow cytometry suggested that hsa-miR-134-5p might also block the G0/S phase transition. In vivo studies using nude mice corroborated the tumor-suppressing effects of hsa-miR-134-5p, which were negated by elevated BDNF levels. Comparative protein analysis across groups confirmed the pathway’s significance in tumorigenesis. Our findings identify hsa-miR-134-5p as a key molecule impeding glioma cell growth by curtailing the BDNF/ERK pathway, with the reversal by BDNF upregulation pointing to the potential of therapeutically exploiting the hsa-miR-134-5p/BDNF axis in glioma care.","PeriodicalId":7669,"journal":{"name":"Aging (Albany NY)","volume":"58 3","pages":"6510 - 6520"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"has-miR-134-5p inhibits the proliferation and migration of glioma cells by regulating the BDNF/ERK signaling pathway\",\"authors\":\"Zeshang Guo, Pingxv An, Xinyu Hong\",\"doi\":\"10.18632/aging.205720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA’s binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays. Scratch tests and Western blotting demonstrated hsa-miR-134-5p’s modulation of the BDNF/ERK pathway and associated decrease in MMP2/9 protein levels. Flow cytometry suggested that hsa-miR-134-5p might also block the G0/S phase transition. In vivo studies using nude mice corroborated the tumor-suppressing effects of hsa-miR-134-5p, which were negated by elevated BDNF levels. Comparative protein analysis across groups confirmed the pathway’s significance in tumorigenesis. Our findings identify hsa-miR-134-5p as a key molecule impeding glioma cell growth by curtailing the BDNF/ERK pathway, with the reversal by BDNF upregulation pointing to the potential of therapeutically exploiting the hsa-miR-134-5p/BDNF axis in glioma care.\",\"PeriodicalId\":7669,\"journal\":{\"name\":\"Aging (Albany NY)\",\"volume\":\"58 3\",\"pages\":\"6510 - 6520\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging (Albany NY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/aging.205720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging (Albany NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/aging.205720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
has-miR-134-5p inhibits the proliferation and migration of glioma cells by regulating the BDNF/ERK signaling pathway
Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA’s binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays. Scratch tests and Western blotting demonstrated hsa-miR-134-5p’s modulation of the BDNF/ERK pathway and associated decrease in MMP2/9 protein levels. Flow cytometry suggested that hsa-miR-134-5p might also block the G0/S phase transition. In vivo studies using nude mice corroborated the tumor-suppressing effects of hsa-miR-134-5p, which were negated by elevated BDNF levels. Comparative protein analysis across groups confirmed the pathway’s significance in tumorigenesis. Our findings identify hsa-miR-134-5p as a key molecule impeding glioma cell growth by curtailing the BDNF/ERK pathway, with the reversal by BDNF upregulation pointing to the potential of therapeutically exploiting the hsa-miR-134-5p/BDNF axis in glioma care.