{"title":"地磁感应电流激发的单相四柱式自动变压器铁芯的振动特性","authors":"Wenkai Xin, Chunming Liu, Guyue Wang, Ruopu Zhan, Bing Li, Zezhong Wang","doi":"10.1049/elp2.12430","DOIUrl":null,"url":null,"abstract":"<p>During geomagnetic storms, geomagnetically induced currents (GICs) occur in the power grid. GIC is a quasi-direct current, which is represented by using a fixed DC current, the authors propose an approach that combines field-circuit-coupled and weakly coupled magneto-mechanical models to investigate the magnetostriction characteristics of single-phase, four-column autotransformer cores excited by GICs. A non-linear magnetostrictive constitutive model that considers the impact of stress and magnetisation intensity on ferromagnetic materials is introduced. The model reveals that the strain in the core initially increases as the magnetisation intensity increases; however, when the core begins to saturate, the magnetostrictive strain weakens as the magnetisation intensity increases. Moreover, the results of multiphysics finite-element modelling are experimentally verified using a direct current bias platform. The results show that when excited by GICs, there is an enhancement in the vibration of the iron core, and the harmonic content of the vibration acceleration increases considerably, with the odd harmonics most significantly increasing in amplitude. The conclusion drawn is that GICs can exacerbate transformer vibration and significantly increase the content of harmonics, especially odd harmonics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12430","citationCount":"0","resultStr":"{\"title\":\"Vibration characteristics of a single-phase four-column auto-transformer core excited by geomagnetically induced currents\",\"authors\":\"Wenkai Xin, Chunming Liu, Guyue Wang, Ruopu Zhan, Bing Li, Zezhong Wang\",\"doi\":\"10.1049/elp2.12430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During geomagnetic storms, geomagnetically induced currents (GICs) occur in the power grid. GIC is a quasi-direct current, which is represented by using a fixed DC current, the authors propose an approach that combines field-circuit-coupled and weakly coupled magneto-mechanical models to investigate the magnetostriction characteristics of single-phase, four-column autotransformer cores excited by GICs. A non-linear magnetostrictive constitutive model that considers the impact of stress and magnetisation intensity on ferromagnetic materials is introduced. The model reveals that the strain in the core initially increases as the magnetisation intensity increases; however, when the core begins to saturate, the magnetostrictive strain weakens as the magnetisation intensity increases. Moreover, the results of multiphysics finite-element modelling are experimentally verified using a direct current bias platform. The results show that when excited by GICs, there is an enhancement in the vibration of the iron core, and the harmonic content of the vibration acceleration increases considerably, with the odd harmonics most significantly increasing in amplitude. The conclusion drawn is that GICs can exacerbate transformer vibration and significantly increase the content of harmonics, especially odd harmonics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12430\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Vibration characteristics of a single-phase four-column auto-transformer core excited by geomagnetically induced currents
During geomagnetic storms, geomagnetically induced currents (GICs) occur in the power grid. GIC is a quasi-direct current, which is represented by using a fixed DC current, the authors propose an approach that combines field-circuit-coupled and weakly coupled magneto-mechanical models to investigate the magnetostriction characteristics of single-phase, four-column autotransformer cores excited by GICs. A non-linear magnetostrictive constitutive model that considers the impact of stress and magnetisation intensity on ferromagnetic materials is introduced. The model reveals that the strain in the core initially increases as the magnetisation intensity increases; however, when the core begins to saturate, the magnetostrictive strain weakens as the magnetisation intensity increases. Moreover, the results of multiphysics finite-element modelling are experimentally verified using a direct current bias platform. The results show that when excited by GICs, there is an enhancement in the vibration of the iron core, and the harmonic content of the vibration acceleration increases considerably, with the odd harmonics most significantly increasing in amplitude. The conclusion drawn is that GICs can exacerbate transformer vibration and significantly increase the content of harmonics, especially odd harmonics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.