失效模式对交错复合材料机械性能影响的研究

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
A. Abhirami, Anup S
{"title":"失效模式对交错复合材料机械性能影响的研究","authors":"A. Abhirami, Anup S","doi":"10.1088/1748-3190/ad3b55","DOIUrl":null,"url":null,"abstract":"Biological materials such as bone, nacre, antler, and teeth are gifted with excellent mechanical properties that have inspired synthetic composites' development. These superior properties are attributed to the geometrical as well as the material properties of the constituents at a small scale. This paper is focused on the influence of failure modes over the mechanical properties including stiffness, strength, and toughness, after the failure of different interfaces in staggered bio-inspired structures such as regular and stairwise staggered arrangements where stiff platelets are embedded in a pliant matrix. In order to find these properties, a novel analytical model for stress transfer and effective Young's modulus of a stairwise staggered composite is developed based on composite micro-mechanics principles in this article. The results indicate that the failure sequence indeed influences mechanical characteristics such as the stiffness, strength, and toughness. Also, the results from the present study is capable of quantifying the major contribution of toughness that is obtained from the vertical interface failure, which is ignored in previous studies for estimating the toughness. The results indicate that a toughness contribution as high as 56% from the inclusion of the first failure can be obtained in a stairwise staggered composite. The influence of significant parameters like Young's moduli ratio between the platelet and matrix (Ep/Em) over the strength at different modes of failure showed that the strength at first and second failures increases as the Ep/Em ratio increases. The findings of this study hold significant potential for predicting the failure sequences with their quantified contributions towards the mechanical properties of a bio-inspired staggered composite. .","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on effect of failure modes on mechanical properties of staggered composites.\",\"authors\":\"A. Abhirami, Anup S\",\"doi\":\"10.1088/1748-3190/ad3b55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological materials such as bone, nacre, antler, and teeth are gifted with excellent mechanical properties that have inspired synthetic composites' development. These superior properties are attributed to the geometrical as well as the material properties of the constituents at a small scale. This paper is focused on the influence of failure modes over the mechanical properties including stiffness, strength, and toughness, after the failure of different interfaces in staggered bio-inspired structures such as regular and stairwise staggered arrangements where stiff platelets are embedded in a pliant matrix. In order to find these properties, a novel analytical model for stress transfer and effective Young's modulus of a stairwise staggered composite is developed based on composite micro-mechanics principles in this article. The results indicate that the failure sequence indeed influences mechanical characteristics such as the stiffness, strength, and toughness. Also, the results from the present study is capable of quantifying the major contribution of toughness that is obtained from the vertical interface failure, which is ignored in previous studies for estimating the toughness. The results indicate that a toughness contribution as high as 56% from the inclusion of the first failure can be obtained in a stairwise staggered composite. The influence of significant parameters like Young's moduli ratio between the platelet and matrix (Ep/Em) over the strength at different modes of failure showed that the strength at first and second failures increases as the Ep/Em ratio increases. The findings of this study hold significant potential for predicting the failure sequences with their quantified contributions towards the mechanical properties of a bio-inspired staggered composite. .\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad3b55\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3b55","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

骨、珍珠质、鹿角和牙齿等生物材料具有优异的机械性能,这为合成复合材料的发展提供了灵感。这些优异的性能归功于小尺度下成分的几何和材料特性。本文主要研究交错生物启发结构中不同界面失效后,失效模式对机械性能(包括坚固性、强度和韧性)的影响。为了确定这些特性,本文基于复合材料微观力学原理,建立了阶梯交错复合材料应力传递和有效杨氏模量的新型分析模型。结果表明,失效顺序确实会影响力学特性,如强度、强度和韧性。此外,本研究的结果还能量化垂直界面破坏对韧性的主要贡献,而以往的研究在估算韧性时忽略了这一点。研究结果表明,在阶梯交错的复合材料中,首次破坏对韧性的贡献率高达 56%。血小板和基体之间的杨氏模量比(Ep/Em)等重要参数对不同失效模式下强度的影响表明,随着 Ep/Em 比的增加,首次和第二次失效时的强度也会增加。本研究的发现对于预测生物启发交错复合材料的失效序列及其对机械性能的量化贡献具有重大潜力。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on effect of failure modes on mechanical properties of staggered composites.
Biological materials such as bone, nacre, antler, and teeth are gifted with excellent mechanical properties that have inspired synthetic composites' development. These superior properties are attributed to the geometrical as well as the material properties of the constituents at a small scale. This paper is focused on the influence of failure modes over the mechanical properties including stiffness, strength, and toughness, after the failure of different interfaces in staggered bio-inspired structures such as regular and stairwise staggered arrangements where stiff platelets are embedded in a pliant matrix. In order to find these properties, a novel analytical model for stress transfer and effective Young's modulus of a stairwise staggered composite is developed based on composite micro-mechanics principles in this article. The results indicate that the failure sequence indeed influences mechanical characteristics such as the stiffness, strength, and toughness. Also, the results from the present study is capable of quantifying the major contribution of toughness that is obtained from the vertical interface failure, which is ignored in previous studies for estimating the toughness. The results indicate that a toughness contribution as high as 56% from the inclusion of the first failure can be obtained in a stairwise staggered composite. The influence of significant parameters like Young's moduli ratio between the platelet and matrix (Ep/Em) over the strength at different modes of failure showed that the strength at first and second failures increases as the Ep/Em ratio increases. The findings of this study hold significant potential for predicting the failure sequences with their quantified contributions towards the mechanical properties of a bio-inspired staggered composite. .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信