润滑接触中的流体动力压力外推法:新型多情况物理信息神经网络框架

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Faras Brumand-Poor, Niklas Bauer, Nils Plückhahn, Matteo Thebelt, Silas Woyda, Katharina Schmitz
{"title":"润滑接触中的流体动力压力外推法:新型多情况物理信息神经网络框架","authors":"Faras Brumand-Poor, Niklas Bauer, Nils Plückhahn, Matteo Thebelt, Silas Woyda, Katharina Schmitz","doi":"10.3390/lubricants12040122","DOIUrl":null,"url":null,"abstract":"In many technical applications, understanding the behavior of tribological contacts is pivotal for enhancing efficiency and lifetime. Traditional experimental investigations into tribology are often both costly and time-consuming. A more profound insight can be achieved through elastohydrodynamic lubrication (EHL) simulation models, such as the ifas-DDS, which determines precise friction calculations in reciprocating pneumatic seals. Similar to other distributed parameter simulations, EHL simulations require a labor-intensive resolution process. Physics-informed neural networks (PINNs) offer an innovative method to expedite the computation of such complex simulations by incorporating the underlying physical equations into the neural network’s parameter optimization process. A hydrodynamic PINN framework has been developed and validated for a variant of the Reynolds equation. This paper elucidates the framework’s capacity to handle multi-case scenarios—utilizing one PINN for various simulations—and its ability to extrapolate solutions beyond a limited training domain. The outcomes demonstrate that PINNs can overcome the typical limitation of neural networks in extrapolating the solution space, showcasing a significant advancement in computational efficiency and model adaptability.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrapolation of Hydrodynamic Pressure in Lubricated Contacts: A Novel Multi-Case Physics-Informed Neural Network Framework\",\"authors\":\"Faras Brumand-Poor, Niklas Bauer, Nils Plückhahn, Matteo Thebelt, Silas Woyda, Katharina Schmitz\",\"doi\":\"10.3390/lubricants12040122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many technical applications, understanding the behavior of tribological contacts is pivotal for enhancing efficiency and lifetime. Traditional experimental investigations into tribology are often both costly and time-consuming. A more profound insight can be achieved through elastohydrodynamic lubrication (EHL) simulation models, such as the ifas-DDS, which determines precise friction calculations in reciprocating pneumatic seals. Similar to other distributed parameter simulations, EHL simulations require a labor-intensive resolution process. Physics-informed neural networks (PINNs) offer an innovative method to expedite the computation of such complex simulations by incorporating the underlying physical equations into the neural network’s parameter optimization process. A hydrodynamic PINN framework has been developed and validated for a variant of the Reynolds equation. This paper elucidates the framework’s capacity to handle multi-case scenarios—utilizing one PINN for various simulations—and its ability to extrapolate solutions beyond a limited training domain. The outcomes demonstrate that PINNs can overcome the typical limitation of neural networks in extrapolating the solution space, showcasing a significant advancement in computational efficiency and model adaptability.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12040122\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在许多技术应用中,了解摩擦接触的行为对于提高效率和使用寿命至关重要。传统的摩擦学实验研究往往既昂贵又耗时。通过弹性流体动力润滑(EHL)模拟模型,如 ifas-DDS,可以对往复式气动密封中的摩擦进行精确计算,从而获得更深刻的见解。与其他分布式参数模拟类似,EHL 模拟也需要耗费大量人力的解析过程。物理信息神经网络(PINN)提供了一种创新方法,通过将基础物理方程纳入神经网络的参数优化过程,加快了此类复杂模拟的计算速度。针对雷诺方程的一个变体,我们开发并验证了流体力学 PINN 框架。本文阐明了该框架处理多情况场景的能力--利用一个 PINN 进行各种模拟--以及其推断有限训练域之外的解决方案的能力。研究结果表明,PINN 可以克服神经网络在外推法求解空间方面的典型限制,在计算效率和模型适应性方面取得了显著进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrapolation of Hydrodynamic Pressure in Lubricated Contacts: A Novel Multi-Case Physics-Informed Neural Network Framework
In many technical applications, understanding the behavior of tribological contacts is pivotal for enhancing efficiency and lifetime. Traditional experimental investigations into tribology are often both costly and time-consuming. A more profound insight can be achieved through elastohydrodynamic lubrication (EHL) simulation models, such as the ifas-DDS, which determines precise friction calculations in reciprocating pneumatic seals. Similar to other distributed parameter simulations, EHL simulations require a labor-intensive resolution process. Physics-informed neural networks (PINNs) offer an innovative method to expedite the computation of such complex simulations by incorporating the underlying physical equations into the neural network’s parameter optimization process. A hydrodynamic PINN framework has been developed and validated for a variant of the Reynolds equation. This paper elucidates the framework’s capacity to handle multi-case scenarios—utilizing one PINN for various simulations—and its ability to extrapolate solutions beyond a limited training domain. The outcomes demonstrate that PINNs can overcome the typical limitation of neural networks in extrapolating the solution space, showcasing a significant advancement in computational efficiency and model adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信