{"title":"质子交换膜燃料电池喷射器建模和设计方法的最新进展","authors":"C. Antetomaso","doi":"10.1155/2024/7931501","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane fuel cell (PEMFC) has a promising future in the power generation and transportation fields. Recirculation of unused anodic gases is fundamental to achieve a high-performance energy system, and this is usually attained employing ejectors or pumps. With respect to the latter, ejectors present no moving parts, thus resulting in both higher overall efficiency of the system and lower maintenance cost. Their main drawback is represented by the narrow optimal operative range: the entrainment ratio (ER) greatly depends on primary pressure, working pressure, and operative condition in general. In the last decade, numerous authors focused their efforts on fully comprehending and correctly simulating their working principles and analyzing how geometrical parameters influence ER and design different geometries to enlarge the operative range. The aim of this paper is to present in an ordered and clear manner the state of the art of ejector design, both from simulative (turbulence model, single or multiphase stream, etc.) and empirical (commonly used “rule of thumb”) points of view.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell\",\"authors\":\"C. Antetomaso\",\"doi\":\"10.1155/2024/7931501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane fuel cell (PEMFC) has a promising future in the power generation and transportation fields. Recirculation of unused anodic gases is fundamental to achieve a high-performance energy system, and this is usually attained employing ejectors or pumps. With respect to the latter, ejectors present no moving parts, thus resulting in both higher overall efficiency of the system and lower maintenance cost. Their main drawback is represented by the narrow optimal operative range: the entrainment ratio (ER) greatly depends on primary pressure, working pressure, and operative condition in general. In the last decade, numerous authors focused their efforts on fully comprehending and correctly simulating their working principles and analyzing how geometrical parameters influence ER and design different geometries to enlarge the operative range. The aim of this paper is to present in an ordered and clear manner the state of the art of ejector design, both from simulative (turbulence model, single or multiphase stream, etc.) and empirical (commonly used “rule of thumb”) points of view.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7931501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/7931501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell
Proton exchange membrane fuel cell (PEMFC) has a promising future in the power generation and transportation fields. Recirculation of unused anodic gases is fundamental to achieve a high-performance energy system, and this is usually attained employing ejectors or pumps. With respect to the latter, ejectors present no moving parts, thus resulting in both higher overall efficiency of the system and lower maintenance cost. Their main drawback is represented by the narrow optimal operative range: the entrainment ratio (ER) greatly depends on primary pressure, working pressure, and operative condition in general. In the last decade, numerous authors focused their efforts on fully comprehending and correctly simulating their working principles and analyzing how geometrical parameters influence ER and design different geometries to enlarge the operative range. The aim of this paper is to present in an ordered and clear manner the state of the art of ejector design, both from simulative (turbulence model, single or multiphase stream, etc.) and empirical (commonly used “rule of thumb”) points of view.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.