挖掘 S 型 UiO-66-NH2/ZnS(en)0.5 异质结构中光催化去除 NO 的潜力

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Wenrui Dai, Chenxiang Wang, Yi Wang, Jieting Sun, Hang Ruan, Yuhua Xue, Shuning Xiao
{"title":"挖掘 S 型 UiO-66-NH2/ZnS(en)0.5 异质结构中光催化去除 NO 的潜力","authors":"Wenrui Dai,&nbsp;Chenxiang Wang,&nbsp;Yi Wang,&nbsp;Jieting Sun,&nbsp;Hang Ruan,&nbsp;Yuhua Xue,&nbsp;Shuning Xiao","doi":"10.1002/idm2.12160","DOIUrl":null,"url":null,"abstract":"<p>The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S-type heterostructure photocatalyst, UiO-66-NH<sub>2</sub>/ZnS(en)<sub>0.5</sub>, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO-66-NH<sub>2</sub> with the highest occupied molecular orbital of ZnS(en)<sub>0.5</sub>, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built-in electric field, facilitating charge separation and migration, as evidenced by time-resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO-66-NH<sub>2</sub> counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X-ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S-type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S-scheme heterojunctions to refine reactive oxygen species for NO remediation.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"400-413"},"PeriodicalIF":24.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12160","citationCount":"0","resultStr":"{\"title\":\"Unlocking photocatalytic NO removal potential in an S-type UiO-66-NH2/ZnS(en)0.5 heterostructure\",\"authors\":\"Wenrui Dai,&nbsp;Chenxiang Wang,&nbsp;Yi Wang,&nbsp;Jieting Sun,&nbsp;Hang Ruan,&nbsp;Yuhua Xue,&nbsp;Shuning Xiao\",\"doi\":\"10.1002/idm2.12160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S-type heterostructure photocatalyst, UiO-66-NH<sub>2</sub>/ZnS(en)<sub>0.5</sub>, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO-66-NH<sub>2</sub> with the highest occupied molecular orbital of ZnS(en)<sub>0.5</sub>, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built-in electric field, facilitating charge separation and migration, as evidenced by time-resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO-66-NH<sub>2</sub> counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X-ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S-type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S-scheme heterojunctions to refine reactive oxygen species for NO remediation.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 3\",\"pages\":\"400-413\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12160\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

一氧化氮污染是一项重大的环境挑战,因此需要开发高效的光催化剂来进行修复。传统的异质结会遇到各种障碍,如接触障碍大、电荷传输迟缓以及氧化还原能力受损。在这里,我们介绍一种创新的 S 型异质结构光催化剂 UiO-66-NH2/ZnS(en)0.5,它是专为克服这些挑战而设计的。这种催化剂采用独特的微波溶热法合成,将 UiO-66-NH2 的最低未占位分子轨道与 ZnS(en)0.5 的最高占位分子轨道进行了策略性排列,促进了阶梯异质结的形成。时间分辨光致发光光谱和光电化学测试证明,由此产生的亲密界面接触会产生内置电场,促进电荷分离和迁移。多孔 UiO-66-NH2 中丰富的活性位点为一氧化氮(NO)氧化提供了吸附和活化位点。性能评估结果表明,在模拟太阳光照射下,光催化去除一氧化氮的效率达到 70%,对硝酸盐的选择性达到 99%。来自 X 射线光电子能谱和捕集实验的证据支持了 S 型异质结构的有效性,展示了精制的活性氧物种,尤其是超氧化物。因此,这项研究为氮氧化物的高级氧化引入了一个新的视角,并释放了 S 型异质结在提纯活性氧物种以修复氮氧化物方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking photocatalytic NO removal potential in an S-type UiO-66-NH2/ZnS(en)0.5 heterostructure

Unlocking photocatalytic NO removal potential in an S-type UiO-66-NH2/ZnS(en)0.5 heterostructure

The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S-type heterostructure photocatalyst, UiO-66-NH2/ZnS(en)0.5, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO-66-NH2 with the highest occupied molecular orbital of ZnS(en)0.5, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built-in electric field, facilitating charge separation and migration, as evidenced by time-resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO-66-NH2 counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X-ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S-type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S-scheme heterojunctions to refine reactive oxygen species for NO remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信