Ahmed A. Alabdel Abass, Hisham Alshaheen, Haifa Takruri
{"title":"无线体域网络干扰控制的博弈论方法","authors":"Ahmed A. Alabdel Abass, Hisham Alshaheen, Haifa Takruri","doi":"10.1049/wss2.12077","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider a scenario where there are two wireless body area networks (WBANs) interfere with each other from a game theoretic perspective. In particular, we envision two WBANs playing a potential game to enhance their performance by decreasing interference to each other. Decreasing interference extends the sensors' batteries life time and reduces the number of re-transmissions. We derive the required conditions for the game to be a potential game and its associated the Nash equilibrium (NE). Specifically, we formulate a game where each WBAN has three strategies. Depending on the payoff of each strategy, the game can be designed to achieve a desired NE. Furthermore, we employ a learning algorithm to achieve that NE. In particular, we employ the Fictitious play (FP) learning algorithm as a distributed algorithm that WBANs can use to approach the NE. The simulation results show that the NE is mainly a function of the power cost parameter and a reliability factor that we set depending on each WBAN setting (patient). However, the power cost factor is more dominant than the reliability factor according to the linear cost function formulation that we use throughout this work.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12077","citationCount":"0","resultStr":"{\"title\":\"A game theoretic approach to wireless body area networks interference control\",\"authors\":\"Ahmed A. Alabdel Abass, Hisham Alshaheen, Haifa Takruri\",\"doi\":\"10.1049/wss2.12077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider a scenario where there are two wireless body area networks (WBANs) interfere with each other from a game theoretic perspective. In particular, we envision two WBANs playing a potential game to enhance their performance by decreasing interference to each other. Decreasing interference extends the sensors' batteries life time and reduces the number of re-transmissions. We derive the required conditions for the game to be a potential game and its associated the Nash equilibrium (NE). Specifically, we formulate a game where each WBAN has three strategies. Depending on the payoff of each strategy, the game can be designed to achieve a desired NE. Furthermore, we employ a learning algorithm to achieve that NE. In particular, we employ the Fictitious play (FP) learning algorithm as a distributed algorithm that WBANs can use to approach the NE. The simulation results show that the NE is mainly a function of the power cost parameter and a reliability factor that we set depending on each WBAN setting (patient). However, the power cost factor is more dominant than the reliability factor according to the linear cost function formulation that we use throughout this work.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A game theoretic approach to wireless body area networks interference control
In this paper we consider a scenario where there are two wireless body area networks (WBANs) interfere with each other from a game theoretic perspective. In particular, we envision two WBANs playing a potential game to enhance their performance by decreasing interference to each other. Decreasing interference extends the sensors' batteries life time and reduces the number of re-transmissions. We derive the required conditions for the game to be a potential game and its associated the Nash equilibrium (NE). Specifically, we formulate a game where each WBAN has three strategies. Depending on the payoff of each strategy, the game can be designed to achieve a desired NE. Furthermore, we employ a learning algorithm to achieve that NE. In particular, we employ the Fictitious play (FP) learning algorithm as a distributed algorithm that WBANs can use to approach the NE. The simulation results show that the NE is mainly a function of the power cost parameter and a reliability factor that we set depending on each WBAN setting (patient). However, the power cost factor is more dominant than the reliability factor according to the linear cost function formulation that we use throughout this work.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.