Juan Carlos Díaz Rivera, C. Aguirre-Salado, Catarina Loredo-Osti, Martín Escoto-Rodríguez
{"title":"利用机器学习和高空间分辨率图像识别树木的植物检疫状态","authors":"Juan Carlos Díaz Rivera, C. Aguirre-Salado, Catarina Loredo-Osti, Martín Escoto-Rodríguez","doi":"10.17268/sci.agropecu.2024.013","DOIUrl":null,"url":null,"abstract":"Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"117 5‐6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images\",\"authors\":\"Juan Carlos Díaz Rivera, C. Aguirre-Salado, Catarina Loredo-Osti, Martín Escoto-Rodríguez\",\"doi\":\"10.17268/sci.agropecu.2024.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"117 5‐6\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17268/sci.agropecu.2024.013\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2024.013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.