MaMD Analytical 1.0

Joseph T. Hefner, Stephen Ousley, Ron Richardson
{"title":"MaMD Analytical 1.0","authors":"Joseph T. Hefner, Stephen Ousley, Ron Richardson","doi":"10.5744/fa.2023.0029","DOIUrl":null,"url":null,"abstract":"We outline the functionalities and application of MaMD Analytical—a new, freely available software package for the estimation of population affinity using human cranial macromorphoscopic (MMS) traits. MaMD Analytical captures MMS scores using line drawings following the procedures outlined by Hefner and Linde (2018). MaMD Analytical generates classifications (with estimated likelihoods) into forensically significant populations using an artificial neural network and reference samples drawn from the Macromorphoscopic Databank (MaMD). Summary data (sensitivity, specificity, x-validated classification accuracies) are provided. In this article, we apply MaMD Analytical to a large sample of identified individuals not used in the original model building to assess utility and demonstrate the typical outputs for MaMD Analytical. MaMD Analytical facilitates construction of the biological profile and provides a number of safeguards in summary statistics as a valuable addition to the forensic anthropological analysis toolkit. MaMD Analytical is written in the open-source R environment integrating a previously developed artificial neural network model to estimate population affinity using well-documented and validated approaches.","PeriodicalId":479469,"journal":{"name":"Forensic anthropology","volume":"53 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MaMD Analytical 1.0\",\"authors\":\"Joseph T. Hefner, Stephen Ousley, Ron Richardson\",\"doi\":\"10.5744/fa.2023.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We outline the functionalities and application of MaMD Analytical—a new, freely available software package for the estimation of population affinity using human cranial macromorphoscopic (MMS) traits. MaMD Analytical captures MMS scores using line drawings following the procedures outlined by Hefner and Linde (2018). MaMD Analytical generates classifications (with estimated likelihoods) into forensically significant populations using an artificial neural network and reference samples drawn from the Macromorphoscopic Databank (MaMD). Summary data (sensitivity, specificity, x-validated classification accuracies) are provided. In this article, we apply MaMD Analytical to a large sample of identified individuals not used in the original model building to assess utility and demonstrate the typical outputs for MaMD Analytical. MaMD Analytical facilitates construction of the biological profile and provides a number of safeguards in summary statistics as a valuable addition to the forensic anthropological analysis toolkit. MaMD Analytical is written in the open-source R environment integrating a previously developed artificial neural network model to estimate population affinity using well-documented and validated approaches.\",\"PeriodicalId\":479469,\"journal\":{\"name\":\"Forensic anthropology\",\"volume\":\"53 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic anthropology\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.5744/fa.2023.0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic anthropology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5744/fa.2023.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们概述了 MaMD Analytical 的功能和应用--这是一款免费提供的新软件包,用于利用人类颅骨大形态(MMS)特征估算种群亲缘关系。MaMD Analytical按照Hefner和Linde(2018年)概述的程序,使用线图捕捉MMS得分。MaMD Analytical 利用人工神经网络和从宏观形态数据库(MaMD)中提取的参考样本,生成具有法医意义的人群分类(估计可能性)。本文提供了简要数据(灵敏度、特异性、经 x 验证的分类准确度)。在本文中,我们将 MaMD Analytical 应用于原始模型构建中未使用的大量已识别个体样本,以评估其效用并展示 MaMD Analytical 的典型输出结果。作为法医人类学分析工具包的重要补充,MaMD 分析法方便了生物特征的构建,并在汇总统计中提供了许多保障措施。MaMD Analytical 是在开源 R 环境中编写的,集成了先前开发的人工神经网络模型,可使用记录详实且经过验证的方法估算种群亲缘关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MaMD Analytical 1.0
We outline the functionalities and application of MaMD Analytical—a new, freely available software package for the estimation of population affinity using human cranial macromorphoscopic (MMS) traits. MaMD Analytical captures MMS scores using line drawings following the procedures outlined by Hefner and Linde (2018). MaMD Analytical generates classifications (with estimated likelihoods) into forensically significant populations using an artificial neural network and reference samples drawn from the Macromorphoscopic Databank (MaMD). Summary data (sensitivity, specificity, x-validated classification accuracies) are provided. In this article, we apply MaMD Analytical to a large sample of identified individuals not used in the original model building to assess utility and demonstrate the typical outputs for MaMD Analytical. MaMD Analytical facilitates construction of the biological profile and provides a number of safeguards in summary statistics as a valuable addition to the forensic anthropological analysis toolkit. MaMD Analytical is written in the open-source R environment integrating a previously developed artificial neural network model to estimate population affinity using well-documented and validated approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信