Ageratina adenophora 炭黑和其他各种炭阳极板添加剂对铅酸电池性能的影响

Q4 Materials Science
Subban Ravi, Baskaran Vignesh, Nagarajan Meimoorthy, Bharathamani Dhanus Kumar, Lakshmanan Sathishkumar, Nagarajan Mohankumar, Nagarajan Kannapiran
{"title":"Ageratina adenophora 炭黑和其他各种炭阳极板添加剂对铅酸电池性能的影响","authors":"Subban Ravi, Baskaran Vignesh, Nagarajan Meimoorthy, Bharathamani Dhanus Kumar, Lakshmanan Sathishkumar, Nagarajan Mohankumar, Nagarajan Kannapiran","doi":"10.15826/chimtech.2024.11.2.03","DOIUrl":null,"url":null,"abstract":"The incorporation of carbon materials in batteries serves to enhance its performance by improving conductivity, achieving uniform active material distribution, increasing capacity, mitigating sulfation, extending cycle life, and considering potential environmental benefits. Even though several possible mechanisms were reported, how exactly carbon works is not fully understood. In the present study a new form of carbon black was prepared from Ageratina adenophora (CBAa) and investigated for its impact on the electrical conductivity of the negative active material in 2 V lead acid cell. The performance was compared with other commercially available carbons like Graphite PG-10, Carbon N550, Carbon N330 and Carbon Vulcan. The carbon was characterised by XRD, SEM and grain size analysis. The initial capacity of the cell was consistently higher and remained stable at 4.6 W∙h; in the life cycle analysis, the cells showed 290 cycles. The post-life cycle test analysis showed that only a white layer on multiple plates indicating the onset of sulfation and there is no corrosion. The performance of the CBAa prepared in the present work was found to be better when compared with the commercially available carbons.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of carbon black from Ageratina adenophora and various other carbon anode plate additives on the performance of lead acid batteries\",\"authors\":\"Subban Ravi, Baskaran Vignesh, Nagarajan Meimoorthy, Bharathamani Dhanus Kumar, Lakshmanan Sathishkumar, Nagarajan Mohankumar, Nagarajan Kannapiran\",\"doi\":\"10.15826/chimtech.2024.11.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of carbon materials in batteries serves to enhance its performance by improving conductivity, achieving uniform active material distribution, increasing capacity, mitigating sulfation, extending cycle life, and considering potential environmental benefits. Even though several possible mechanisms were reported, how exactly carbon works is not fully understood. In the present study a new form of carbon black was prepared from Ageratina adenophora (CBAa) and investigated for its impact on the electrical conductivity of the negative active material in 2 V lead acid cell. The performance was compared with other commercially available carbons like Graphite PG-10, Carbon N550, Carbon N330 and Carbon Vulcan. The carbon was characterised by XRD, SEM and grain size analysis. The initial capacity of the cell was consistently higher and remained stable at 4.6 W∙h; in the life cycle analysis, the cells showed 290 cycles. The post-life cycle test analysis showed that only a white layer on multiple plates indicating the onset of sulfation and there is no corrosion. The performance of the CBAa prepared in the present work was found to be better when compared with the commercially available carbons.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2024.11.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2024.11.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

在电池中加入碳材料可通过改善导电性、实现活性材料的均匀分布、增加容量、减轻硫酸盐化、延长循环寿命以及考虑潜在的环境效益来提高电池性能。尽管已经报道了几种可能的机制,但人们对碳究竟是如何起作用的并不完全了解。本研究从 Ageratina adenophora(CBAa)中制备了一种新型炭黑,并研究了它对 2 V 铅酸电池负极活性材料导电性的影响。将其性能与石墨 PG-10、碳 N550、碳 N330 和碳 Vulcan 等其他市售碳进行了比较。通过 XRD、SEM 和晶粒度分析对碳进行了表征。电池的初始容量一直较高,并稳定在 4.6 W∙h 的水平;在生命周期分析中,电池循环了 290 次。寿命周期后的测试分析表明,多块电池板上只有白色层,表明硫化开始,没有腐蚀。与市售碳相比,本研究制备的 CBAa 性能更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of carbon black from Ageratina adenophora and various other carbon anode plate additives on the performance of lead acid batteries
The incorporation of carbon materials in batteries serves to enhance its performance by improving conductivity, achieving uniform active material distribution, increasing capacity, mitigating sulfation, extending cycle life, and considering potential environmental benefits. Even though several possible mechanisms were reported, how exactly carbon works is not fully understood. In the present study a new form of carbon black was prepared from Ageratina adenophora (CBAa) and investigated for its impact on the electrical conductivity of the negative active material in 2 V lead acid cell. The performance was compared with other commercially available carbons like Graphite PG-10, Carbon N550, Carbon N330 and Carbon Vulcan. The carbon was characterised by XRD, SEM and grain size analysis. The initial capacity of the cell was consistently higher and remained stable at 4.6 W∙h; in the life cycle analysis, the cells showed 290 cycles. The post-life cycle test analysis showed that only a white layer on multiple plates indicating the onset of sulfation and there is no corrosion. The performance of the CBAa prepared in the present work was found to be better when compared with the commercially available carbons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信