{"title":"常规和有机耕作制度对土壤生化指标影响的综合评估","authors":"B. Futa, Magdalena Myszura-Dymek, S. Wesołowska","doi":"10.31545/intagr/185985","DOIUrl":null,"url":null,"abstract":". Organic farming is system with a growing interest worldwide. The objective of this paper was an assessment of the after-effects of perennial cultivation of spring barley, oats, and red clover in both conventional and organic systems on the chemi - cal properties, enzymatic activity, and potential biochemical soil fertility index of the soil. The study analyzed the activity of acid phosphatase, alkaline phosphatase, urease and dehydrogenases as well as the potential biochemical soil fertility index of soil and the chemical parameters of soil. Soil material was collected from spring wheat grown after spring barley, oats and red clover, occurring in conventional or organic systems in 2009-2019. It has been shown that, compared to a conventional system, the perennial cultivation of red clover and cereals in the organic farming system has contributed to a significant improvement in the chemical (pH KCl by an average of 8%, total organic carbon – 18%, total nitrogen – 15%, N-NH 4 + – 34%) and enzymatic (acid phosphatase – 29%, alkaline phosphatase – 67%, urease – 28% and dehydrogenases – 25%) soil quality indicators. The potential biochemical soil fertility index values were also significantly higher in soils in the organic farming system (by an average of 39%).","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated assessment of the impact of conventional and organic farming systems on soil biochemical indicators\",\"authors\":\"B. Futa, Magdalena Myszura-Dymek, S. Wesołowska\",\"doi\":\"10.31545/intagr/185985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Organic farming is system with a growing interest worldwide. The objective of this paper was an assessment of the after-effects of perennial cultivation of spring barley, oats, and red clover in both conventional and organic systems on the chemi - cal properties, enzymatic activity, and potential biochemical soil fertility index of the soil. The study analyzed the activity of acid phosphatase, alkaline phosphatase, urease and dehydrogenases as well as the potential biochemical soil fertility index of soil and the chemical parameters of soil. Soil material was collected from spring wheat grown after spring barley, oats and red clover, occurring in conventional or organic systems in 2009-2019. It has been shown that, compared to a conventional system, the perennial cultivation of red clover and cereals in the organic farming system has contributed to a significant improvement in the chemical (pH KCl by an average of 8%, total organic carbon – 18%, total nitrogen – 15%, N-NH 4 + – 34%) and enzymatic (acid phosphatase – 29%, alkaline phosphatase – 67%, urease – 28% and dehydrogenases – 25%) soil quality indicators. The potential biochemical soil fertility index values were also significantly higher in soils in the organic farming system (by an average of 39%).\",\"PeriodicalId\":13959,\"journal\":{\"name\":\"International Agrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Agrophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31545/intagr/185985\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/185985","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Integrated assessment of the impact of conventional and organic farming systems on soil biochemical indicators
. Organic farming is system with a growing interest worldwide. The objective of this paper was an assessment of the after-effects of perennial cultivation of spring barley, oats, and red clover in both conventional and organic systems on the chemi - cal properties, enzymatic activity, and potential biochemical soil fertility index of the soil. The study analyzed the activity of acid phosphatase, alkaline phosphatase, urease and dehydrogenases as well as the potential biochemical soil fertility index of soil and the chemical parameters of soil. Soil material was collected from spring wheat grown after spring barley, oats and red clover, occurring in conventional or organic systems in 2009-2019. It has been shown that, compared to a conventional system, the perennial cultivation of red clover and cereals in the organic farming system has contributed to a significant improvement in the chemical (pH KCl by an average of 8%, total organic carbon – 18%, total nitrogen – 15%, N-NH 4 + – 34%) and enzymatic (acid phosphatase – 29%, alkaline phosphatase – 67%, urease – 28% and dehydrogenases – 25%) soil quality indicators. The potential biochemical soil fertility index values were also significantly higher in soils in the organic farming system (by an average of 39%).
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.