{"title":"欧几里得算法及其在求解模块化乘法逆中的作用","authors":"Dev Raj Kandel","doi":"10.3126/kdk.v4i1.64567","DOIUrl":null,"url":null,"abstract":"In this article, the prime motivation is to demonstrate how calculating modular multiplicative inverse can be simplified computationally with the help of Euclid’s algorithm, which is usually attributed to finding the Greatest Common Divisor.","PeriodicalId":332111,"journal":{"name":"Kaumodaki: Journal of Multidisciplinary Studies","volume":"45 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse\",\"authors\":\"Dev Raj Kandel\",\"doi\":\"10.3126/kdk.v4i1.64567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the prime motivation is to demonstrate how calculating modular multiplicative inverse can be simplified computationally with the help of Euclid’s algorithm, which is usually attributed to finding the Greatest Common Divisor.\",\"PeriodicalId\":332111,\"journal\":{\"name\":\"Kaumodaki: Journal of Multidisciplinary Studies\",\"volume\":\"45 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaumodaki: Journal of Multidisciplinary Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/kdk.v4i1.64567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaumodaki: Journal of Multidisciplinary Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/kdk.v4i1.64567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse
In this article, the prime motivation is to demonstrate how calculating modular multiplicative inverse can be simplified computationally with the help of Euclid’s algorithm, which is usually attributed to finding the Greatest Common Divisor.