在 F2 后代中检测到母体妊娠期间不良饮食的影响

IF 1.3 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE
N. Tillquist, S. Reed, A. Reiter, M. Kawaida, E. C. Lee, S. Zinn, K. Govoni
{"title":"在 F2 后代中检测到母体妊娠期间不良饮食的影响","authors":"N. Tillquist, S. Reed, A. Reiter, M. Kawaida, E. C. Lee, S. Zinn, K. Govoni","doi":"10.1093/tas/txae055","DOIUrl":null,"url":null,"abstract":"Abstract Poor maternal nutrition of F0 ewes impairs F1 offspring growth, with minimal differences in glucose tolerance or select metabolic circulating factors, and independent of differences in residual feed intake (RFI). To determine if poor maternal nutrition in F0 ewes alters F2 offspring growth, circulating leptin, feed efficiency, or glucose tolerance, F0 ewes (n = 46) pregnant with twins were fed 100% (control), 60% (restricted), or 140% (over) of National Research Council requirements from days 30 ± 0.02 of gestation until parturition. At 16 to 19 mo of age, female F1 (n = 36) offspring were bred to generate F2 offspring [CON-F2 (n = 12 ewes; 6 rams), RES-F2 (n = 7 ewes; 13 rams), or OVER-F2 (n = 13 ewes; 9 rams) corresponding to diets of the granddam (F0)]. Lamb body weights (BW) and blood samples were collected weekly from days 0 to 28 and every 14 d until day 252 of age. Circulating leptin was measured in serum at days 0, 7, 14, 56, 210, and 252. An intravenous glucose tolerance test was performed at days 133 ± 0.28. At days 167 ± 0.33, individual daily intake was recorded over a 77-d feeding period to determine RFI. Rams were euthanized at days 285 ± 0.93, and body morphometrics, loin eye area (LEA), back fat thickness, and organ weights were collected and bone mineral density (BMD) and length were determined in the right hind leg. During gestation, OVER-F1 ewes tended to be 8.6% smaller than CON-F1 ewes (P ≤ 0.06). F2 offspring were of similar BW from birth to day 70 (P ≥ 0.20). However, from days 84 to 252, RES-F2 offspring tended to be 7.3% smaller than CON-F2 (P ≤ 0.10). Granddam diet did not influence F2 ram body morphometrics, organ or muscle weights, LEA, adipose deposition, or leg BMD (P ≥ 0.84). RES-F2 (−0.20) and CON-F2 (−0.45) rams tended to be more feed efficient than CON-F2 ewes (0.31; P ≤ 0.08). No effects of granddam diet were observed on glucose or insulin average or baseline concentrations, area under the curve, first-phase response, or ratio (P ≥ 0.52). However, CON-F2 rams (297 mg/dL ± 16.5) had a greater glucose peak compared with RES-F2 rams (239 mg/dL ± 11.2; P = 0.05). Peak insulin concentrations were not influenced by granddam diet (P = 0.75). At d 56, RES-F2 and OVER-F2 offspring had 53.5% and 61.8% less leptin compared with CON-F2 offspring, respectively (P ≤ 0.02). These data indicate that poor maternal nutrition impacts offspring growth into the second generation with minimal impacts on offspring RFI, glucose tolerance, and circulating leptin.","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of poor maternal diet during gestation are detected in F2 offspring\",\"authors\":\"N. Tillquist, S. Reed, A. Reiter, M. Kawaida, E. C. Lee, S. Zinn, K. Govoni\",\"doi\":\"10.1093/tas/txae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Poor maternal nutrition of F0 ewes impairs F1 offspring growth, with minimal differences in glucose tolerance or select metabolic circulating factors, and independent of differences in residual feed intake (RFI). To determine if poor maternal nutrition in F0 ewes alters F2 offspring growth, circulating leptin, feed efficiency, or glucose tolerance, F0 ewes (n = 46) pregnant with twins were fed 100% (control), 60% (restricted), or 140% (over) of National Research Council requirements from days 30 ± 0.02 of gestation until parturition. At 16 to 19 mo of age, female F1 (n = 36) offspring were bred to generate F2 offspring [CON-F2 (n = 12 ewes; 6 rams), RES-F2 (n = 7 ewes; 13 rams), or OVER-F2 (n = 13 ewes; 9 rams) corresponding to diets of the granddam (F0)]. Lamb body weights (BW) and blood samples were collected weekly from days 0 to 28 and every 14 d until day 252 of age. Circulating leptin was measured in serum at days 0, 7, 14, 56, 210, and 252. An intravenous glucose tolerance test was performed at days 133 ± 0.28. At days 167 ± 0.33, individual daily intake was recorded over a 77-d feeding period to determine RFI. Rams were euthanized at days 285 ± 0.93, and body morphometrics, loin eye area (LEA), back fat thickness, and organ weights were collected and bone mineral density (BMD) and length were determined in the right hind leg. During gestation, OVER-F1 ewes tended to be 8.6% smaller than CON-F1 ewes (P ≤ 0.06). F2 offspring were of similar BW from birth to day 70 (P ≥ 0.20). However, from days 84 to 252, RES-F2 offspring tended to be 7.3% smaller than CON-F2 (P ≤ 0.10). Granddam diet did not influence F2 ram body morphometrics, organ or muscle weights, LEA, adipose deposition, or leg BMD (P ≥ 0.84). RES-F2 (−0.20) and CON-F2 (−0.45) rams tended to be more feed efficient than CON-F2 ewes (0.31; P ≤ 0.08). No effects of granddam diet were observed on glucose or insulin average or baseline concentrations, area under the curve, first-phase response, or ratio (P ≥ 0.52). However, CON-F2 rams (297 mg/dL ± 16.5) had a greater glucose peak compared with RES-F2 rams (239 mg/dL ± 11.2; P = 0.05). Peak insulin concentrations were not influenced by granddam diet (P = 0.75). At d 56, RES-F2 and OVER-F2 offspring had 53.5% and 61.8% less leptin compared with CON-F2 offspring, respectively (P ≤ 0.02). These data indicate that poor maternal nutrition impacts offspring growth into the second generation with minimal impacts on offspring RFI, glucose tolerance, and circulating leptin.\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txae055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 F0母羊母体营养不良会影响F1后代的生长,但葡萄糖耐量或某些代谢循环因子的差异极小,且与剩余采食量(RFI)的差异无关。为了确定F0母羊母体营养不良是否会改变F2后代的生长、循环瘦素、饲料效率或葡萄糖耐受性,从妊娠第30天±0.02天开始至分娩前,给怀双胞胎的F0母羊(n = 46)喂食国家研究委员会要求的100%(对照组)、60%(限制组)或140%(超标组)的饲料。16 到 19 月龄时,雌性 F1(n = 36)后代与祖母(F0)对应的日粮进行繁殖,产生 F2 后代[CON-F2(n = 12 只母羊;6 只公羊)、RES-F2(n = 7 只母羊;13 只公羊)或 OVER-F2(n = 13 只母羊;9 只公羊)]。从第 0 天到第 28 天,每周收集一次羔羊体重(BW)和血液样本;第 252 天之前,每 14 天收集一次羔羊体重和血液样本。在第 0、7、14、56、210 和 252 天测量血清中的循环瘦素。在第 133 ± 0.28 天进行静脉葡萄糖耐量试验。在第 167 ± 0.33 天,记录 77 天的个体日摄入量,以确定 RFI。公羊在第 285 ± 0.93 天时安乐死,收集身体形态测量数据、腰眼面积 (LEA)、背部脂肪厚度和器官重量,并测定右后腿的骨矿密度 (BMD) 和长度。在妊娠期,OVER-F1 母羊往往比 CON-F1 母羊小 8.6%(P ≤ 0.06)。从出生到第 70 天,F2 后代的体重相近(P ≥ 0.20)。然而,从第 84 天到第 252 天,RES-F2 后代的体重往往比 CON-F2 后代小 7.3%(P ≤ 0.10)。祖代饮食不影响F2公羊的身体形态测量、器官或肌肉重量、LEA、脂肪沉积或腿部BMD(P≥0.84)。RES-F2(-0.20)和CON-F2(-0.45)公羊的饲料效率往往高于CON-F2母羊(0.31;P≤0.08)。没有观察到祖代日粮对葡萄糖或胰岛素平均浓度或基线浓度、曲线下面积、第一阶段反应或比率有任何影响(P ≥ 0.52)。然而,与 RES-F2 公羊(239 mg/dL ± 11.2;P = 0.05)相比,CON-F2 公羊(297 mg/dL ± 16.5)的葡萄糖峰值更高。胰岛素峰值浓度不受祖母饮食的影响(P = 0.75)。在第56天,RES-F2和OVER-F2后代的瘦素分别比CON-F2后代少53.5%和61.8%(P ≤ 0.02)。这些数据表明,母体营养不良会影响后代到第二代的生长,但对后代的RFI、葡萄糖耐量和循环瘦素的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of poor maternal diet during gestation are detected in F2 offspring
Abstract Poor maternal nutrition of F0 ewes impairs F1 offspring growth, with minimal differences in glucose tolerance or select metabolic circulating factors, and independent of differences in residual feed intake (RFI). To determine if poor maternal nutrition in F0 ewes alters F2 offspring growth, circulating leptin, feed efficiency, or glucose tolerance, F0 ewes (n = 46) pregnant with twins were fed 100% (control), 60% (restricted), or 140% (over) of National Research Council requirements from days 30 ± 0.02 of gestation until parturition. At 16 to 19 mo of age, female F1 (n = 36) offspring were bred to generate F2 offspring [CON-F2 (n = 12 ewes; 6 rams), RES-F2 (n = 7 ewes; 13 rams), or OVER-F2 (n = 13 ewes; 9 rams) corresponding to diets of the granddam (F0)]. Lamb body weights (BW) and blood samples were collected weekly from days 0 to 28 and every 14 d until day 252 of age. Circulating leptin was measured in serum at days 0, 7, 14, 56, 210, and 252. An intravenous glucose tolerance test was performed at days 133 ± 0.28. At days 167 ± 0.33, individual daily intake was recorded over a 77-d feeding period to determine RFI. Rams were euthanized at days 285 ± 0.93, and body morphometrics, loin eye area (LEA), back fat thickness, and organ weights were collected and bone mineral density (BMD) and length were determined in the right hind leg. During gestation, OVER-F1 ewes tended to be 8.6% smaller than CON-F1 ewes (P ≤ 0.06). F2 offspring were of similar BW from birth to day 70 (P ≥ 0.20). However, from days 84 to 252, RES-F2 offspring tended to be 7.3% smaller than CON-F2 (P ≤ 0.10). Granddam diet did not influence F2 ram body morphometrics, organ or muscle weights, LEA, adipose deposition, or leg BMD (P ≥ 0.84). RES-F2 (−0.20) and CON-F2 (−0.45) rams tended to be more feed efficient than CON-F2 ewes (0.31; P ≤ 0.08). No effects of granddam diet were observed on glucose or insulin average or baseline concentrations, area under the curve, first-phase response, or ratio (P ≥ 0.52). However, CON-F2 rams (297 mg/dL ± 16.5) had a greater glucose peak compared with RES-F2 rams (239 mg/dL ± 11.2; P = 0.05). Peak insulin concentrations were not influenced by granddam diet (P = 0.75). At d 56, RES-F2 and OVER-F2 offspring had 53.5% and 61.8% less leptin compared with CON-F2 offspring, respectively (P ≤ 0.02). These data indicate that poor maternal nutrition impacts offspring growth into the second generation with minimal impacts on offspring RFI, glucose tolerance, and circulating leptin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Animal Science
Translational Animal Science Veterinary-Veterinary (all)
CiteScore
2.80
自引率
15.40%
发文量
149
审稿时长
8 weeks
期刊介绍: Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信