{"title":"OpenAnnotateApi:用于高效注释和分析基因组区域染色质可及性的 Python 和 R 软件包","authors":"Zijing Gao, Rui Jiang, Shengquan Chen","doi":"10.1093/bioadv/vbae055","DOIUrl":null,"url":null,"abstract":"Abstract Summary Chromatin accessibility serves as a critical measurement of physical contact between nuclear macromolecules and DNA sequence, providing valuable insights into the comprehensive landscape of regulatory mechanisms, thus we previously developed the OpenAnnotate web server. However, as an increasing number of epigenomic analysis software tools emerged, web-based annotation often faced limitations and inconveniences when integrated into these software pipelines. To address these issues, we here develop two software packages named OpenAnnotatePy and OpenAnnotateR. In addition to web-based functionalities, these packages encompass supplementary features, including the capability for simultaneous annotation across multiple cell types, advanced searching of systems, tissues and cell types, and converting the result to the data structure of mainstream tools. Moreover, we applied the packages to various scenarios, including cell type revealing, regulatory element prediction, and integration into mainstream single-cell ATAC-seq analysis pipelines including EpiScanpy, Signac, and ArchR. We anticipate that OpenAnnotateApi will significantly facilitate the deciphering of gene regulatory mechanisms, and offer crucial assistance in the field of epigenomic studies. Availability and implementation OpenAnnotateApi for R is available at https://github.com/ZjGaothu/OpenAnnotateR and for Python is available at https://github.com/ZjGaothu/OpenAnnotatePy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"4 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenAnnotateApi: Python and R packages to efficiently annotate and analyze chromatin accessibility of genomic regions\",\"authors\":\"Zijing Gao, Rui Jiang, Shengquan Chen\",\"doi\":\"10.1093/bioadv/vbae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Summary Chromatin accessibility serves as a critical measurement of physical contact between nuclear macromolecules and DNA sequence, providing valuable insights into the comprehensive landscape of regulatory mechanisms, thus we previously developed the OpenAnnotate web server. However, as an increasing number of epigenomic analysis software tools emerged, web-based annotation often faced limitations and inconveniences when integrated into these software pipelines. To address these issues, we here develop two software packages named OpenAnnotatePy and OpenAnnotateR. In addition to web-based functionalities, these packages encompass supplementary features, including the capability for simultaneous annotation across multiple cell types, advanced searching of systems, tissues and cell types, and converting the result to the data structure of mainstream tools. Moreover, we applied the packages to various scenarios, including cell type revealing, regulatory element prediction, and integration into mainstream single-cell ATAC-seq analysis pipelines including EpiScanpy, Signac, and ArchR. We anticipate that OpenAnnotateApi will significantly facilitate the deciphering of gene regulatory mechanisms, and offer crucial assistance in the field of epigenomic studies. Availability and implementation OpenAnnotateApi for R is available at https://github.com/ZjGaothu/OpenAnnotateR and for Python is available at https://github.com/ZjGaothu/OpenAnnotatePy.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
OpenAnnotateApi: Python and R packages to efficiently annotate and analyze chromatin accessibility of genomic regions
Abstract Summary Chromatin accessibility serves as a critical measurement of physical contact between nuclear macromolecules and DNA sequence, providing valuable insights into the comprehensive landscape of regulatory mechanisms, thus we previously developed the OpenAnnotate web server. However, as an increasing number of epigenomic analysis software tools emerged, web-based annotation often faced limitations and inconveniences when integrated into these software pipelines. To address these issues, we here develop two software packages named OpenAnnotatePy and OpenAnnotateR. In addition to web-based functionalities, these packages encompass supplementary features, including the capability for simultaneous annotation across multiple cell types, advanced searching of systems, tissues and cell types, and converting the result to the data structure of mainstream tools. Moreover, we applied the packages to various scenarios, including cell type revealing, regulatory element prediction, and integration into mainstream single-cell ATAC-seq analysis pipelines including EpiScanpy, Signac, and ArchR. We anticipate that OpenAnnotateApi will significantly facilitate the deciphering of gene regulatory mechanisms, and offer crucial assistance in the field of epigenomic studies. Availability and implementation OpenAnnotateApi for R is available at https://github.com/ZjGaothu/OpenAnnotateR and for Python is available at https://github.com/ZjGaothu/OpenAnnotatePy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.