{"title":"改进巴罗克林波通道模拟中水汽和对流不稳定性的表示方法","authors":"D. J. Lloveras, D. Durran","doi":"10.1175/mwr-d-23-0210.1","DOIUrl":null,"url":null,"abstract":"\nWe present an improved approach to generating moist baroclinically unstable background states for ƒ-plane-channel simulations via potential-vorticity (PV) inversion. Previous studies specified PV distributions with constant values in the troposphere and the stratosphere, but this produces unrealistic static-stability profiles that decrease sharply with height in the troposphere. Adding moisture to such environments can yield unrealistically large values of convective available potential energy (CAPE) even for reasonable relative-humidity (RH) distributions. In our modified approach, we specify a PV distribution that increases with height in the troposphere and the stratosphere, yielding background states with more realistic values of static stability and CAPE. This modification produces environments that are better suited for representing moist processes, namely deep convection, in idealized extratropical-cyclone simulations. Also, we present a method for introducing moisture that preserves a specified RH distribution while maintaining hydrostatic balance. Our approach allows for a large degree of control over the initial conditions, as background states with different jet strengths and shapes, average temperatures, moisture contents, or horizontal shears can easily be obtained without changing the underlying PV formula and inadvertently producing unreasonable values of static stability or CAPE. We demonstrate the characteristics of idealized extratropical cyclones developing in our background states by adding localized perturbations that represent an upper-level trough passing over a low-level frontal zone. In particular, we illustrate the impacts of horizontal shear, moisture, and grid spacing on baroclinic-wave development.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"580 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Representation of Moisture and Convective Instability in Baroclinic-Wave Channel Simulations\",\"authors\":\"D. J. Lloveras, D. Durran\",\"doi\":\"10.1175/mwr-d-23-0210.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe present an improved approach to generating moist baroclinically unstable background states for ƒ-plane-channel simulations via potential-vorticity (PV) inversion. Previous studies specified PV distributions with constant values in the troposphere and the stratosphere, but this produces unrealistic static-stability profiles that decrease sharply with height in the troposphere. Adding moisture to such environments can yield unrealistically large values of convective available potential energy (CAPE) even for reasonable relative-humidity (RH) distributions. In our modified approach, we specify a PV distribution that increases with height in the troposphere and the stratosphere, yielding background states with more realistic values of static stability and CAPE. This modification produces environments that are better suited for representing moist processes, namely deep convection, in idealized extratropical-cyclone simulations. Also, we present a method for introducing moisture that preserves a specified RH distribution while maintaining hydrostatic balance. Our approach allows for a large degree of control over the initial conditions, as background states with different jet strengths and shapes, average temperatures, moisture contents, or horizontal shears can easily be obtained without changing the underlying PV formula and inadvertently producing unreasonable values of static stability or CAPE. We demonstrate the characteristics of idealized extratropical cyclones developing in our background states by adding localized perturbations that represent an upper-level trough passing over a low-level frontal zone. In particular, we illustrate the impacts of horizontal shear, moisture, and grid spacing on baroclinic-wave development.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"580 3\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0210.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0210.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Improving the Representation of Moisture and Convective Instability in Baroclinic-Wave Channel Simulations
We present an improved approach to generating moist baroclinically unstable background states for ƒ-plane-channel simulations via potential-vorticity (PV) inversion. Previous studies specified PV distributions with constant values in the troposphere and the stratosphere, but this produces unrealistic static-stability profiles that decrease sharply with height in the troposphere. Adding moisture to such environments can yield unrealistically large values of convective available potential energy (CAPE) even for reasonable relative-humidity (RH) distributions. In our modified approach, we specify a PV distribution that increases with height in the troposphere and the stratosphere, yielding background states with more realistic values of static stability and CAPE. This modification produces environments that are better suited for representing moist processes, namely deep convection, in idealized extratropical-cyclone simulations. Also, we present a method for introducing moisture that preserves a specified RH distribution while maintaining hydrostatic balance. Our approach allows for a large degree of control over the initial conditions, as background states with different jet strengths and shapes, average temperatures, moisture contents, or horizontal shears can easily be obtained without changing the underlying PV formula and inadvertently producing unreasonable values of static stability or CAPE. We demonstrate the characteristics of idealized extratropical cyclones developing in our background states by adding localized perturbations that represent an upper-level trough passing over a low-level frontal zone. In particular, we illustrate the impacts of horizontal shear, moisture, and grid spacing on baroclinic-wave development.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.