M. Golmakani, M. Niakousari, A. Peykar, T. Safaeipour
{"title":"微波辅助酸樱桃核油酯交换以生产生物柴油:与超声波浴、超声波探针和欧姆辅助酯交换方法的比较","authors":"M. Golmakani, M. Niakousari, A. Peykar, T. Safaeipour","doi":"10.3989/gya.0429231","DOIUrl":null,"url":null,"abstract":"In this study, sour cherry kernel oil was converted to biodiesel by microwave-assisted transesterification. Evaluations were made of several variables, namely, reaction time (1, 2, 3, 4, and 5 min), microwave power (100, 200, 300, 400, and 500 W), methanol/oil mole ratio (3, 6, 9, 12, and 15), and catalyst (KOH) concentration (0.3%, 0.6%, 0.9%, 1.2%, and 1.5%). The efficiency of fatty acid methyl esters increased in response to lengthier reaction times, greater microwave power, higher methanol/oil mole ratio, and higher catalyst concentrations up to the optimal level. The optimal reaction conditions for microwave-assisted transesterification were 300 W microwave power, 1.2% catalyst concentration, a methanol/oil mole ratio of 1:2, and a reaction time of 4 min. Microwave-assisted transesterification was more effective than ohmic-, magnetic stirrer-, ultrasonic probe-, and ultrasonic bath-assisted transesterification methods. In conclusion, microwave-assisted transesterification can be suggested as a fast, efficient, and economical method compared to other transesterification methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"2003 8","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave-assisted transesterification of sour cherry kernel oil for biodiesel production: comparison with ultrasonic bath-, ultrasonic probe-, and ohmic-assisted transesterification methods\",\"authors\":\"M. Golmakani, M. Niakousari, A. Peykar, T. Safaeipour\",\"doi\":\"10.3989/gya.0429231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, sour cherry kernel oil was converted to biodiesel by microwave-assisted transesterification. Evaluations were made of several variables, namely, reaction time (1, 2, 3, 4, and 5 min), microwave power (100, 200, 300, 400, and 500 W), methanol/oil mole ratio (3, 6, 9, 12, and 15), and catalyst (KOH) concentration (0.3%, 0.6%, 0.9%, 1.2%, and 1.5%). The efficiency of fatty acid methyl esters increased in response to lengthier reaction times, greater microwave power, higher methanol/oil mole ratio, and higher catalyst concentrations up to the optimal level. The optimal reaction conditions for microwave-assisted transesterification were 300 W microwave power, 1.2% catalyst concentration, a methanol/oil mole ratio of 1:2, and a reaction time of 4 min. Microwave-assisted transesterification was more effective than ohmic-, magnetic stirrer-, ultrasonic probe-, and ultrasonic bath-assisted transesterification methods. In conclusion, microwave-assisted transesterification can be suggested as a fast, efficient, and economical method compared to other transesterification methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"2003 8\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3989/gya.0429231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3989/gya.0429231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microwave-assisted transesterification of sour cherry kernel oil for biodiesel production: comparison with ultrasonic bath-, ultrasonic probe-, and ohmic-assisted transesterification methods
In this study, sour cherry kernel oil was converted to biodiesel by microwave-assisted transesterification. Evaluations were made of several variables, namely, reaction time (1, 2, 3, 4, and 5 min), microwave power (100, 200, 300, 400, and 500 W), methanol/oil mole ratio (3, 6, 9, 12, and 15), and catalyst (KOH) concentration (0.3%, 0.6%, 0.9%, 1.2%, and 1.5%). The efficiency of fatty acid methyl esters increased in response to lengthier reaction times, greater microwave power, higher methanol/oil mole ratio, and higher catalyst concentrations up to the optimal level. The optimal reaction conditions for microwave-assisted transesterification were 300 W microwave power, 1.2% catalyst concentration, a methanol/oil mole ratio of 1:2, and a reaction time of 4 min. Microwave-assisted transesterification was more effective than ohmic-, magnetic stirrer-, ultrasonic probe-, and ultrasonic bath-assisted transesterification methods. In conclusion, microwave-assisted transesterification can be suggested as a fast, efficient, and economical method compared to other transesterification methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.