悬浮于 R290/R600 中的二氧化钛 (TiO2) 作为 R134a 替代品的能效分析

IF 0.7 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
D. Madyira, T. O. Babarinde
{"title":"悬浮于 R290/R600 中的二氧化钛 (TiO2) 作为 R134a 替代品的能效分析","authors":"D. Madyira, T. O. Babarinde","doi":"10.24425/amm.2024.147814","DOIUrl":null,"url":null,"abstract":"Synthetic refrigerants are being phased out gradually in accordance with international environmental protection protocols because of global warming and ozone layer depletion. Adopting R290/R600 refrigerant, an environmentally friendly refrigerant, to replace R134a, a high global warming potential refrigerant, provides one of the solutions. In this study, exergy analysis of R134a and TiO2 suspended with lubricant and R290/R600 with a composition of 60% R290 and 40% R600 (60:40) was investigated in vapour compression system (VCRS) using R290/ R600 in TiO2 nanomixture lubricant and compared with R134a and R290/ R600 in pure lubricant. At the inlets and outlets, the main components of the VCRS are connected to temperature and pressure sensors to measure the inlet and outlet temperatures and pressures. The results obtained were used to analyses the exergy losses at various VCRS components (compressor, condenser, evaporator, expansion valve) were investigated to determine the refrigerator’s total exergy destruction (E·xdest.Total) and efficiency (ηex). The E·xdest.Total of R290/R600 in pure lubricant and R290/R600 TiO2 nanomixture lubricant was reduced by 26.9% and 42.3%, respectively, and system ηex increased by 27.7% and 38.9% respectively when compared to R134a in the system. Hence, TiO2 suspended with R290/R600 is potential a substitute for R134a.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy Analysis of Tita nium Dioxide (TiO2) Suspended with R290/R600 as a Substitute for R134a\",\"authors\":\"D. Madyira, T. O. Babarinde\",\"doi\":\"10.24425/amm.2024.147814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic refrigerants are being phased out gradually in accordance with international environmental protection protocols because of global warming and ozone layer depletion. Adopting R290/R600 refrigerant, an environmentally friendly refrigerant, to replace R134a, a high global warming potential refrigerant, provides one of the solutions. In this study, exergy analysis of R134a and TiO2 suspended with lubricant and R290/R600 with a composition of 60% R290 and 40% R600 (60:40) was investigated in vapour compression system (VCRS) using R290/ R600 in TiO2 nanomixture lubricant and compared with R134a and R290/ R600 in pure lubricant. At the inlets and outlets, the main components of the VCRS are connected to temperature and pressure sensors to measure the inlet and outlet temperatures and pressures. The results obtained were used to analyses the exergy losses at various VCRS components (compressor, condenser, evaporator, expansion valve) were investigated to determine the refrigerator’s total exergy destruction (E·xdest.Total) and efficiency (ηex). The E·xdest.Total of R290/R600 in pure lubricant and R290/R600 TiO2 nanomixture lubricant was reduced by 26.9% and 42.3%, respectively, and system ηex increased by 27.7% and 38.9% respectively when compared to R134a in the system. Hence, TiO2 suspended with R290/R600 is potential a substitute for R134a.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.147814\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147814","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于全球变暖和臭氧层破坏,根据国际环保协议,合成制冷剂正被逐步淘汰。采用环保型制冷剂 R290/R600 来替代全球变暖潜能值较高的制冷剂 R134a 是解决方案之一。在这项研究中,研究了在蒸汽压缩系统(VCRS)中使用 R290/ R600 与 TiO2 纳米混合物润滑剂悬浮的 R134a 和 TiO2 润滑剂,以及 R290/R600 (R290 占 60%,R600 占 40%,60:40)的放能分析,并与 R134a 和 R290/ R600 与纯润滑剂进行了比较。在入口和出口处,VCRS 的主要部件与温度和压力传感器相连,以测量入口和出口的温度和压力。获得的结果用于分析 VCRS 各部件(压缩机、冷凝器、蒸发器、膨胀阀)的放能损失,以确定冰箱的总放能破坏(E-xdest.Total)和效率(ηex)。与系统中的 R134a 相比,纯润滑剂中的 R290/R600 和 R290/R600 TiO2 纳米混合物润滑剂的 E-xdest.Total 分别减少了 26.9% 和 42.3%,系统 ηex 分别增加了 27.7% 和 38.9%。因此,悬浮在 R290/R600 中的 TiO2 有可能成为 R134a 的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exergy Analysis of Tita nium Dioxide (TiO2) Suspended with R290/R600 as a Substitute for R134a
Synthetic refrigerants are being phased out gradually in accordance with international environmental protection protocols because of global warming and ozone layer depletion. Adopting R290/R600 refrigerant, an environmentally friendly refrigerant, to replace R134a, a high global warming potential refrigerant, provides one of the solutions. In this study, exergy analysis of R134a and TiO2 suspended with lubricant and R290/R600 with a composition of 60% R290 and 40% R600 (60:40) was investigated in vapour compression system (VCRS) using R290/ R600 in TiO2 nanomixture lubricant and compared with R134a and R290/ R600 in pure lubricant. At the inlets and outlets, the main components of the VCRS are connected to temperature and pressure sensors to measure the inlet and outlet temperatures and pressures. The results obtained were used to analyses the exergy losses at various VCRS components (compressor, condenser, evaporator, expansion valve) were investigated to determine the refrigerator’s total exergy destruction (E·xdest.Total) and efficiency (ηex). The E·xdest.Total of R290/R600 in pure lubricant and R290/R600 TiO2 nanomixture lubricant was reduced by 26.9% and 42.3%, respectively, and system ηex increased by 27.7% and 38.9% respectively when compared to R134a in the system. Hence, TiO2 suspended with R290/R600 is potential a substitute for R134a.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Metallurgy and Materials
Archives of Metallurgy and Materials 工程技术-冶金工程
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology. Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信