Brenden Jing Su, J. J. Foo, Grayson Zhi Sheng Ling, Wee‐Jun Ong
{"title":"协同氧化还原反应,共同生产 H2O2 和高附加值化学品:实现可持续发展的双功能光催化技术","authors":"Brenden Jing Su, J. J. Foo, Grayson Zhi Sheng Ling, Wee‐Jun Ong","doi":"10.1002/sus2.192","DOIUrl":null,"url":null,"abstract":"Integrating H2O2 evolution with oxidative organic synthesis in a semiconductor‐driven photoredox reaction is highly attractive since H2O2 and high‐value chemicals can be concurrently produced using solar light as the only energy input. The dual‐functional photocatalytic approach, free from sacrificial agents, enables simultaneous production of H2O2 and high‐value organic chemicals. This strategy promises a green and sustainable organic synthesis with minimal greenhouse gas emissions. In this review, we first elucidate the fundamental principles of cooperative photoredox integration of H2O2 synthesis and selective organic oxidation with simultaneous utilization of photoexcited electrons and holes over semiconductor‐based photocatalysts. Afterwards, a thorough review on the recent advancements of cooperative photoredox synthesis of H2O2 and value‐added chemicals is presented. Notably, in‐depth discussions and insights into the techniques for unravelling the photoredox reaction mechanisms are elucidated. Finally, critical challenges and prospects in this thriving field are comprehensively discussed. It is envisioned that this review will serve as a pivotal guidance on the rational design of such dual‐functional photocatalytic system, thereby further stimulating the development of economical and environmentally benign H2O2 and high‐value chemicals production.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"23 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic redox reactions toward co‐production of H2O2 and value‐added chemicals: Dual‐functional photocatalysis to achieving sustainability\",\"authors\":\"Brenden Jing Su, J. J. Foo, Grayson Zhi Sheng Ling, Wee‐Jun Ong\",\"doi\":\"10.1002/sus2.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating H2O2 evolution with oxidative organic synthesis in a semiconductor‐driven photoredox reaction is highly attractive since H2O2 and high‐value chemicals can be concurrently produced using solar light as the only energy input. The dual‐functional photocatalytic approach, free from sacrificial agents, enables simultaneous production of H2O2 and high‐value organic chemicals. This strategy promises a green and sustainable organic synthesis with minimal greenhouse gas emissions. In this review, we first elucidate the fundamental principles of cooperative photoredox integration of H2O2 synthesis and selective organic oxidation with simultaneous utilization of photoexcited electrons and holes over semiconductor‐based photocatalysts. Afterwards, a thorough review on the recent advancements of cooperative photoredox synthesis of H2O2 and value‐added chemicals is presented. Notably, in‐depth discussions and insights into the techniques for unravelling the photoredox reaction mechanisms are elucidated. Finally, critical challenges and prospects in this thriving field are comprehensively discussed. It is envisioned that this review will serve as a pivotal guidance on the rational design of such dual‐functional photocatalytic system, thereby further stimulating the development of economical and environmentally benign H2O2 and high‐value chemicals production.\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"23 11\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synergistic redox reactions toward co‐production of H2O2 and value‐added chemicals: Dual‐functional photocatalysis to achieving sustainability
Integrating H2O2 evolution with oxidative organic synthesis in a semiconductor‐driven photoredox reaction is highly attractive since H2O2 and high‐value chemicals can be concurrently produced using solar light as the only energy input. The dual‐functional photocatalytic approach, free from sacrificial agents, enables simultaneous production of H2O2 and high‐value organic chemicals. This strategy promises a green and sustainable organic synthesis with minimal greenhouse gas emissions. In this review, we first elucidate the fundamental principles of cooperative photoredox integration of H2O2 synthesis and selective organic oxidation with simultaneous utilization of photoexcited electrons and holes over semiconductor‐based photocatalysts. Afterwards, a thorough review on the recent advancements of cooperative photoredox synthesis of H2O2 and value‐added chemicals is presented. Notably, in‐depth discussions and insights into the techniques for unravelling the photoredox reaction mechanisms are elucidated. Finally, critical challenges and prospects in this thriving field are comprehensively discussed. It is envisioned that this review will serve as a pivotal guidance on the rational design of such dual‐functional photocatalytic system, thereby further stimulating the development of economical and environmentally benign H2O2 and high‐value chemicals production.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.