计算机断层扫描和双能量 X 射线析像测量法身体成分参数协调,以普及基于人口的横断面研究中的脂肪组织测量。

IF 2.2 Q3 ENDOCRINOLOGY & METABOLISM
Clinical Obesity Pub Date : 2024-04-11 DOI:10.1111/cob.12660
Elliot T. Varney, Seth Lirette, Peter T. Katzmarzyk, Frank Greenway, Candace M. Howard
{"title":"计算机断层扫描和双能量 X 射线析像测量法身体成分参数协调,以普及基于人口的横断面研究中的脂肪组织测量。","authors":"Elliot T. Varney,&nbsp;Seth Lirette,&nbsp;Peter T. Katzmarzyk,&nbsp;Frank Greenway,&nbsp;Candace M. Howard","doi":"10.1111/cob.12660","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To harmonise computed tomography (CT) and dual-energy x-ray absorptiometry (DXA) body composition measurements allowing easy conversion in longitudinal assessments and across cohorts to assess cardiometabolic risk and disease. Retrospective cross-sectional observational study from 1996 to 2008 included participants in the Pennington Center Longitudinal Study (PCLS) (<i>N</i> = 1967; 571 African American/1396 White). Anthropometrics, whole-body DXA and abdominal CT images were obtained. Multi-layer segmentation techniques (Analyze; Rochester, MN) quantified visceral adipose tissue (VAT). Clinical biomarkers were obtained from routine blood samples. Linear models were used to predict CT-VAT from DXA-VAT and examine the effects of traditional biomarkers on cross-sectional-VAT. Predicted CT-VAT was highly associated with measured CT-VAT using ordinary least square linear regression analysis and random forest models (<i>R</i><sup>2</sup> = 0.84; 0.94, respectively, <i>p</i> &lt; .0001). Model stratification effects showed low variability between races and sexes. Overall, associations between measured CT-VAT and DXA-predicted CT-VAT were good (<i>R</i><sup>2</sup> &gt; 0.7) or excellent (<i>R</i><sup>2</sup> &gt; 0.8) and improved for all stratification groups except African American men using random forest models. The clinical effects on measured CT-VAT and DXA-VAT showed no significant clinical difference in the measured adipose tissue areas (mean difference = 0.22 cm<sup>2</sup>). Random forest modelling seamlessly predicts CT-VAT from measured DXA-VAT to a degree of accuracy that falls within the bounds of universally accepted standard error.</p>\n </div>","PeriodicalId":10399,"journal":{"name":"Clinical Obesity","volume":"14 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computed Tomography and Dual-Energy X-Ray Asorptiometry body composition parameter harmonisation to universalise adipose tissue measurements in a population-based cross-sectional study\",\"authors\":\"Elliot T. Varney,&nbsp;Seth Lirette,&nbsp;Peter T. Katzmarzyk,&nbsp;Frank Greenway,&nbsp;Candace M. Howard\",\"doi\":\"10.1111/cob.12660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>To harmonise computed tomography (CT) and dual-energy x-ray absorptiometry (DXA) body composition measurements allowing easy conversion in longitudinal assessments and across cohorts to assess cardiometabolic risk and disease. Retrospective cross-sectional observational study from 1996 to 2008 included participants in the Pennington Center Longitudinal Study (PCLS) (<i>N</i> = 1967; 571 African American/1396 White). Anthropometrics, whole-body DXA and abdominal CT images were obtained. Multi-layer segmentation techniques (Analyze; Rochester, MN) quantified visceral adipose tissue (VAT). Clinical biomarkers were obtained from routine blood samples. Linear models were used to predict CT-VAT from DXA-VAT and examine the effects of traditional biomarkers on cross-sectional-VAT. Predicted CT-VAT was highly associated with measured CT-VAT using ordinary least square linear regression analysis and random forest models (<i>R</i><sup>2</sup> = 0.84; 0.94, respectively, <i>p</i> &lt; .0001). Model stratification effects showed low variability between races and sexes. Overall, associations between measured CT-VAT and DXA-predicted CT-VAT were good (<i>R</i><sup>2</sup> &gt; 0.7) or excellent (<i>R</i><sup>2</sup> &gt; 0.8) and improved for all stratification groups except African American men using random forest models. The clinical effects on measured CT-VAT and DXA-VAT showed no significant clinical difference in the measured adipose tissue areas (mean difference = 0.22 cm<sup>2</sup>). Random forest modelling seamlessly predicts CT-VAT from measured DXA-VAT to a degree of accuracy that falls within the bounds of universally accepted standard error.</p>\\n </div>\",\"PeriodicalId\":10399,\"journal\":{\"name\":\"Clinical Obesity\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Obesity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cob.12660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Obesity","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cob.12660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

统一计算机断层扫描(CT)和双能 X 射线吸收测定(DXA)的身体成分测量方法,以便于在纵向评估和不同队列中进行转换,从而评估心脏代谢风险和疾病。1996 年至 2008 年的回顾性横断面观察研究纳入了彭宁顿中心纵向研究(PCLS)的参与者(N = 1967;571 名非洲裔美国人/1396 名白人)。研究人员获得了人体测量、全身 DXA 和腹部 CT 图像。多层分割技术(Analyze; Rochester, MN)对内脏脂肪组织(VAT)进行了量化。临床生物标志物来自常规血液样本。利用线性模型从 DXA-VAT 预测 CT-VAT,并检验传统生物标记物对横断面-VAT 的影响。使用普通最小二乘法线性回归分析和随机森林模型,预测的 CT-VAT 与测量的 CT-VAT 高度相关(R2 = 0.84;0.94,p 0.7)或极佳(R2 > 0.8),使用随机森林模型,除非洲裔美国男性外,所有分层组的 CT-VAT 均有改善。对测量的 CT-VAT 和 DXA-VAT 的临床影响显示,测量的脂肪组织面积没有显著的临床差异(平均差异 = 0.22 cm2)。随机森林模型可根据测量的 DXA-VAT 对 CT-VAT 进行无缝预测,其准确度在普遍接受的标准误差范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computed Tomography and Dual-Energy X-Ray Asorptiometry body composition parameter harmonisation to universalise adipose tissue measurements in a population-based cross-sectional study

To harmonise computed tomography (CT) and dual-energy x-ray absorptiometry (DXA) body composition measurements allowing easy conversion in longitudinal assessments and across cohorts to assess cardiometabolic risk and disease. Retrospective cross-sectional observational study from 1996 to 2008 included participants in the Pennington Center Longitudinal Study (PCLS) (N = 1967; 571 African American/1396 White). Anthropometrics, whole-body DXA and abdominal CT images were obtained. Multi-layer segmentation techniques (Analyze; Rochester, MN) quantified visceral adipose tissue (VAT). Clinical biomarkers were obtained from routine blood samples. Linear models were used to predict CT-VAT from DXA-VAT and examine the effects of traditional biomarkers on cross-sectional-VAT. Predicted CT-VAT was highly associated with measured CT-VAT using ordinary least square linear regression analysis and random forest models (R2 = 0.84; 0.94, respectively, p < .0001). Model stratification effects showed low variability between races and sexes. Overall, associations between measured CT-VAT and DXA-predicted CT-VAT were good (R2 > 0.7) or excellent (R2 > 0.8) and improved for all stratification groups except African American men using random forest models. The clinical effects on measured CT-VAT and DXA-VAT showed no significant clinical difference in the measured adipose tissue areas (mean difference = 0.22 cm2). Random forest modelling seamlessly predicts CT-VAT from measured DXA-VAT to a degree of accuracy that falls within the bounds of universally accepted standard error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Obesity
Clinical Obesity ENDOCRINOLOGY & METABOLISM-
CiteScore
5.90
自引率
3.00%
发文量
59
期刊介绍: Clinical Obesity is an international peer-reviewed journal publishing high quality translational and clinical research papers and reviews focussing on obesity and its co-morbidities. Key areas of interest are: • Patient assessment, classification, diagnosis and prognosis • Drug treatments, clinical trials and supporting research • Bariatric surgery and follow-up issues • Surgical approaches to remove body fat • Pharmacological, dietary and behavioural approaches for weight loss • Clinical physiology • Clinically relevant epidemiology • Psychological aspects of obesity • Co-morbidities • Nursing and care of patients with obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信