{"title":"激光焊缝弯曲路径对 6063 铝合金强度和温度分布的影响:COMSOL 数值模拟","authors":"Aiyong Cui, Haodong Liu, Shaodong Gao, Huakai Wei, Jialei Zhao","doi":"10.24425/amm.2024.147810","DOIUrl":null,"url":null,"abstract":"To improve the welding performance of aluminum alloys, a thermal source model of an irregular weld seam was established. COMSOL software was used for numerical simulation of the weld seam geometry effect on the temperature and stress fields in laser welding, which results were experimentally validated. The results show that the ellipsoidal laser welding melted micropool exhibited quasi-steady-state temperature field characteristics. The temperature gradient and thermal stress showed an increase followed by a decline. The temperature fluctuation amplitude of the square-tooth-shaped weld seam exceeded that of the arc-toothshaped one. The temperature evolution of the broken line tooth-shaped weld seam showed a slightly increasing trend, except for the inflection point. The experimental average tensile strength of the weld seam was the highest, reaching about 210 MPa, i.e., roughly 85% of the base material (245 MPa), which coincided with the COMSOL-based temperature field simulation results. With increasing deformation amplitude and transition radius, the maximum tensile force, tensile strength, and elongation at fracture showed an increasing trend. However, the deformation amplitude should be below a certain limit because its increase elongates the welding path and reduces the distance between weld seams, resulting in serious heat accumulation. The tensile fracture morphology of the 6063-T6 base material was curved shear, with shallow toughness pits, small tearing edges at the edges, and small granular objects, indicating small plastic deformation during the fracture process. The tensile fracture of the welded part spanned the weld seam and the base material, and the fracture occurred along the tangent direction of the weld seam. The fracture surface was smooth, the tearing edges at the edge of the toughness pit shifted along the weld seam direction, forming many co-directional slip bands, with highly pronounced plastic deformation.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Weld Seam Curved Path Effect on 6063 Aluminum Alloy Strength and Temperature Distributions: COMSOL Numerical Simulation\",\"authors\":\"Aiyong Cui, Haodong Liu, Shaodong Gao, Huakai Wei, Jialei Zhao\",\"doi\":\"10.24425/amm.2024.147810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the welding performance of aluminum alloys, a thermal source model of an irregular weld seam was established. COMSOL software was used for numerical simulation of the weld seam geometry effect on the temperature and stress fields in laser welding, which results were experimentally validated. The results show that the ellipsoidal laser welding melted micropool exhibited quasi-steady-state temperature field characteristics. The temperature gradient and thermal stress showed an increase followed by a decline. The temperature fluctuation amplitude of the square-tooth-shaped weld seam exceeded that of the arc-toothshaped one. The temperature evolution of the broken line tooth-shaped weld seam showed a slightly increasing trend, except for the inflection point. The experimental average tensile strength of the weld seam was the highest, reaching about 210 MPa, i.e., roughly 85% of the base material (245 MPa), which coincided with the COMSOL-based temperature field simulation results. With increasing deformation amplitude and transition radius, the maximum tensile force, tensile strength, and elongation at fracture showed an increasing trend. However, the deformation amplitude should be below a certain limit because its increase elongates the welding path and reduces the distance between weld seams, resulting in serious heat accumulation. The tensile fracture morphology of the 6063-T6 base material was curved shear, with shallow toughness pits, small tearing edges at the edges, and small granular objects, indicating small plastic deformation during the fracture process. The tensile fracture of the welded part spanned the weld seam and the base material, and the fracture occurred along the tangent direction of the weld seam. The fracture surface was smooth, the tearing edges at the edge of the toughness pit shifted along the weld seam direction, forming many co-directional slip bands, with highly pronounced plastic deformation.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.147810\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147810","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Laser Weld Seam Curved Path Effect on 6063 Aluminum Alloy Strength and Temperature Distributions: COMSOL Numerical Simulation
To improve the welding performance of aluminum alloys, a thermal source model of an irregular weld seam was established. COMSOL software was used for numerical simulation of the weld seam geometry effect on the temperature and stress fields in laser welding, which results were experimentally validated. The results show that the ellipsoidal laser welding melted micropool exhibited quasi-steady-state temperature field characteristics. The temperature gradient and thermal stress showed an increase followed by a decline. The temperature fluctuation amplitude of the square-tooth-shaped weld seam exceeded that of the arc-toothshaped one. The temperature evolution of the broken line tooth-shaped weld seam showed a slightly increasing trend, except for the inflection point. The experimental average tensile strength of the weld seam was the highest, reaching about 210 MPa, i.e., roughly 85% of the base material (245 MPa), which coincided with the COMSOL-based temperature field simulation results. With increasing deformation amplitude and transition radius, the maximum tensile force, tensile strength, and elongation at fracture showed an increasing trend. However, the deformation amplitude should be below a certain limit because its increase elongates the welding path and reduces the distance between weld seams, resulting in serious heat accumulation. The tensile fracture morphology of the 6063-T6 base material was curved shear, with shallow toughness pits, small tearing edges at the edges, and small granular objects, indicating small plastic deformation during the fracture process. The tensile fracture of the welded part spanned the weld seam and the base material, and the fracture occurred along the tangent direction of the weld seam. The fracture surface was smooth, the tearing edges at the edge of the toughness pit shifted along the weld seam direction, forming many co-directional slip bands, with highly pronounced plastic deformation.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.