算法 xxx:带有动态位移的更快随机 SVD

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang
{"title":"算法 xxx:带有动态位移的更快随机 SVD","authors":"Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang","doi":"10.1145/3660629","DOIUrl":null,"url":null,"abstract":"\n Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a\n d\n yn\n a\n mic\n sh\n ifts based randomized\n SVD\n (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.\n","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm xxx: Faster Randomized SVD with Dynamic Shifts\",\"authors\":\"Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang\",\"doi\":\"10.1145/3660629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a\\n d\\n yn\\n a\\n mic\\n sh\\n ifts based randomized\\n SVD\\n (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.\\n\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3660629\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3660629","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了给实际应用中的大型稀疏矩阵(即计算几个最大奇异值和相应的奇异矢量)提供一种更快、更方便的截断 SVD 算法,我们采用了一种动态位移幂迭代技术来提高随机 SVD 方法的精度。这就产生了一种基于微小变化的随机 SVD(dashSVD)算法,该算法还与处理稀疏矩阵的技能相结合。dashSVD 算法中包含了一种精度控制机制,可近似监测计算奇异向量的单位向量误差边界,而开销则可忽略不计。实际数据实验证明,dashSVD 算法在很大程度上提高了随机 SVD 算法的精度,或以更少的矩阵遍数达到相同的精度,并为随机 SVD 计算提供了高效的精度控制机制,同时展示了运行时间和并行效率方面的优势。此外,还证明了采用移幂迭代的随机 SVD 的近似误差约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm xxx: Faster Randomized SVD with Dynamic Shifts
Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a d yn a mic sh ifts based randomized SVD (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信