{"title":"算法 xxx:带有动态位移的更快随机 SVD","authors":"Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang","doi":"10.1145/3660629","DOIUrl":null,"url":null,"abstract":"\n Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a\n d\n yn\n a\n mic\n sh\n ifts based randomized\n SVD\n (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.\n","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm xxx: Faster Randomized SVD with Dynamic Shifts\",\"authors\":\"Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang\",\"doi\":\"10.1145/3660629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a\\n d\\n yn\\n a\\n mic\\n sh\\n ifts based randomized\\n SVD\\n (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.\\n\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3660629\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3660629","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Algorithm xxx: Faster Randomized SVD with Dynamic Shifts
Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a
d
yn
a
mic
sh
ifts based randomized
SVD
(dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.