超低频电场测量中雷德贝格原子的斯塔克效应理论研究

IF 1.6 Q4 ENERGY & FUELS
Hongtian Song, Yong Xiao, Shanshan Hu, Dongping Xiao, BaoShuai Wang, Zhuxin Shi, Huaiqing Zhang
{"title":"超低频电场测量中雷德贝格原子的斯塔克效应理论研究","authors":"Hongtian Song,&nbsp;Yong Xiao,&nbsp;Shanshan Hu,&nbsp;Dongping Xiao,&nbsp;BaoShuai Wang,&nbsp;Zhuxin Shi,&nbsp;Huaiqing Zhang","doi":"10.1049/esi2.12149","DOIUrl":null,"url":null,"abstract":"<p>Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (<i>E</i> &lt; <i>E</i><sub>avoid</sub>, where <i>E</i><sub>avoid</sub> is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability <i>α</i>. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for <i>α</i> and <i>E</i><sub>avoid</sub> in different Rydberg states are also obtained: <i>α</i> = A × (<i>n</i>*)<sup>6</sup> + B × (<i>n</i>*)<sup>7</sup> and <i>E</i><sub>avoid</sub> = C/(<i>n</i>*)<sup>5</sup> + D/(<i>n</i>*)<sup>7</sup>, where A(B) = 2.2503 × 10<sup>−9</sup>(7.49,948 × 10<sup>−11</sup>) and C(<i>D</i>) = 1.68,868 × 10<sup>8</sup>(2.45,991 × 10<sup>9</sup>). The error of <i>α</i> and <i>E</i><sub>avoid</sub> compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of <i>α</i> and <i>E</i><sub>avoid</sub> is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12149","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement\",\"authors\":\"Hongtian Song,&nbsp;Yong Xiao,&nbsp;Shanshan Hu,&nbsp;Dongping Xiao,&nbsp;BaoShuai Wang,&nbsp;Zhuxin Shi,&nbsp;Huaiqing Zhang\",\"doi\":\"10.1049/esi2.12149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (<i>E</i> &lt; <i>E</i><sub>avoid</sub>, where <i>E</i><sub>avoid</sub> is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability <i>α</i>. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for <i>α</i> and <i>E</i><sub>avoid</sub> in different Rydberg states are also obtained: <i>α</i> = A × (<i>n</i>*)<sup>6</sup> + B × (<i>n</i>*)<sup>7</sup> and <i>E</i><sub>avoid</sub> = C/(<i>n</i>*)<sup>5</sup> + D/(<i>n</i>*)<sup>7</sup>, where A(B) = 2.2503 × 10<sup>−9</sup>(7.49,948 × 10<sup>−11</sup>) and C(<i>D</i>) = 1.68,868 × 10<sup>8</sup>(2.45,991 × 10<sup>9</sup>). The error of <i>α</i> and <i>E</i><sub>avoid</sub> compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of <i>α</i> and <i>E</i><sub>avoid</sub> is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

超低频电场测量对于分析电磁兼容性、评估设备状态和其他相关领域至关重要。基于雷德贝格原子的超低频电场测量是通过观察雷德贝格态光谱中的斯塔克偏移来进行的。在特定的电场强度范围内(E < Eavoid,其中 Eavoid 是避免跨越电场的阈值),雷德贝格原子光谱会发生与电场强度相关的二次频移,其系数由原子极性 α 决定。作者建立了外部电场与原子系统之间相互作用的动态方程,并展示了铯雷德贝格原子的斯塔克结构图。同时还得到了不同雷德贝格态下 α 和 Eavoid 的数学公式:α = A × (n*)6 + B × (n*)7 和 Eavoid = C/(n*)5 + D/(n*)7, 其中 A(B) = 2.2503 × 10-9(7.49,948 × 10-11) 和 C(D) = 1.68,868 × 108(2.45,991 × 109)。与实验值相比,α 和 Eavoid 的误差不超过 8%,在低雷德贝格态甚至更低。准确计算 α 和 Eavoid 值对于将雷德贝格原子量子相干效应纳入新型电力系统的超低频电场测量至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement

Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement

Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (E < Eavoid, where Eavoid is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability α. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for α and Eavoid in different Rydberg states are also obtained: α = A × (n*)6 + B × (n*)7 and Eavoid = C/(n*)5 + D/(n*)7, where A(B) = 2.2503 × 10−9(7.49,948 × 10−11) and C(D) = 1.68,868 × 108(2.45,991 × 109). The error of α and Eavoid compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of α and Eavoid is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信