历史回顾:人类神经病理学中高尔基方法的黄金时代。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
I. Ferrer
{"title":"历史回顾:人类神经病理学中高尔基方法的黄金时代。","authors":"I. Ferrer","doi":"10.1093/jnen/nlae031","DOIUrl":null,"url":null,"abstract":"Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical review: The golden age of the Golgi method in human neuropathology.\",\"authors\":\"I. Ferrer\",\"doi\":\"10.1093/jnen/nlae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlae031\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlae031","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

上世纪 70 年代、80 年代和 90 年代,高尔基方法被用于研究人类神经病理学。尽管应用这些方法的实验室数量相对较少,但它们的影响却至关重要,因为它们增加了人们对以下方面的了解:(1) 人类大脑和小脑畸形及神经节肿瘤中神经元的形态、方向和定位,以及 (2) 异常结构的存在,包括与智力迟钝有关的几种疾病中的大而薄的脊柱(脊柱发育不良)、神经元储积症中的轴突丘和树突(巨细胞)的局灶性增大、阿尔茨海默病中的生长锥样附属物,以及其他痴呆症中的异常结构。尽管最初有人担心其可靠性,但树突分支和树突棘的减少已被确定为智力迟钝、痴呆和其他病理情况中的常见改变。在适当的实验模型中进行的类似观察也证实了最初在人体材料中使用高尔基方法发现的许多异常现象。此外,电子显微镜、免疫组化、荧光示踪剂和综合方法也证明了以完全染色的单个神经元的三维图像进行可视化的先驱观察的准确性。虽然高尔基方法的黄金时代已过去多年,但这些方法仍然是人类神经病理学的有用补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Historical review: The golden age of the Golgi method in human neuropathology.
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信