1982-2020年中国青藏高原高寒草地长期时空连续NDVI产品的开发

Xiali Yang, Xiaodong Huang, Ying Ma, Yuxin Li, Qisheng Feng, Tiangang Liang
{"title":"1982-2020年中国青藏高原高寒草地长期时空连续NDVI产品的开发","authors":"Xiali Yang,&nbsp;Xiaodong Huang,&nbsp;Ying Ma,&nbsp;Yuxin Li,&nbsp;Qisheng Feng,&nbsp;Tiangang Liang","doi":"10.1002/glr2.12076","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with <i>R</i><sup>2</sup> values mostly above 0.7.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.</p>\n </section>\n </div>","PeriodicalId":100593,"journal":{"name":"Grassland Research","volume":"3 2","pages":"100-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12076","citationCount":"0","resultStr":"{\"title\":\"Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China\",\"authors\":\"Xiali Yang,&nbsp;Xiaodong Huang,&nbsp;Ying Ma,&nbsp;Yuxin Li,&nbsp;Qisheng Feng,&nbsp;Tiangang Liang\",\"doi\":\"10.1002/glr2.12076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with <i>R</i><sup>2</sup> values mostly above 0.7.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.</p>\\n </section>\\n </div>\",\"PeriodicalId\":100593,\"journal\":{\"name\":\"Grassland Research\",\"volume\":\"3 2\",\"pages\":\"100-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12076\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grassland Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

归一化差异植被指数(NDVI)的时间序列数据是全球和区域植被监测的重要指标。本研究利用随机森林降尺度模型,将中分辨率成像分光仪(MODIS)和高级甚高分辨率辐射计(AVHRR)的时间序列植被指数产品融合在一起,建立了从1982年到2020年空间分辨率为250米的长时间序列月度植被指数数据集。与 MODIS NDVI 产品相比,融合产品的均方根误差和平均绝对误差分别在 0 至 0.075 和 0 至 0.05 之间,R2 值大多在 0.7 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China

Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China

Background

The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.

Methods

In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.

Results

Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with R2 values mostly above 0.7.

Conclusions

The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信