包含延迟的分数阶 FitzHugh-Nagumo 神经模型中的新型霍普夫分岔探索与控制策略

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yunzhang Zhang, Changjin Xu
{"title":"包含延迟的分数阶 FitzHugh-Nagumo 神经模型中的新型霍普夫分岔探索与控制策略","authors":"Yunzhang Zhang, Changjin Xu","doi":"10.3390/fractalfract8040229","DOIUrl":null,"url":null,"abstract":"In this article, we propose a new fractional-order delay-coupled FitzHugh–Nagumo neural model. Taking advantage of delay as a bifurcation parameter, we explore the stability and bifurcation of the formulated fractional-order delay-coupled FitzHugh–Nagumo neural model. A delay-independent stability and bifurcation conditions for the fractional-order delay-coupled FitzHugh–Nagumo neural model is acquired. By designing a proper PDp controller, we can efficaciously control the stability domain and the time of emergence of the bifurcation phenomenon of the considered fractional delay-coupled FitzHugh–Nagumo neural model. By exploiting a reasonable hybrid controller, we can successfully adjust the stability domain and the bifurcation onset time of the involved fractional delay-coupled FitzHugh–Nagumo neural model. This study shows that when the delay crosses a critical value, a Hopf bifurcation will arise. When we adjust the control parameter, we can find other critical values to enlarge or narrow the stability domain of the fractional-order delay-coupled FitzHugh–Nagumo neural model. In order to check the correctness of the acquired outcomes of this article, we present some simulation outcomes via Matlab 7.0 software. The obtained theoretical fruits in this article have momentous theoretical significance in running and constructing networks.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Hopf Bifurcation Exploration and Control Strategies in the Fractional-Order FitzHugh–Nagumo Neural Model Incorporating Delay\",\"authors\":\"Yunzhang Zhang, Changjin Xu\",\"doi\":\"10.3390/fractalfract8040229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a new fractional-order delay-coupled FitzHugh–Nagumo neural model. Taking advantage of delay as a bifurcation parameter, we explore the stability and bifurcation of the formulated fractional-order delay-coupled FitzHugh–Nagumo neural model. A delay-independent stability and bifurcation conditions for the fractional-order delay-coupled FitzHugh–Nagumo neural model is acquired. By designing a proper PDp controller, we can efficaciously control the stability domain and the time of emergence of the bifurcation phenomenon of the considered fractional delay-coupled FitzHugh–Nagumo neural model. By exploiting a reasonable hybrid controller, we can successfully adjust the stability domain and the bifurcation onset time of the involved fractional delay-coupled FitzHugh–Nagumo neural model. This study shows that when the delay crosses a critical value, a Hopf bifurcation will arise. When we adjust the control parameter, we can find other critical values to enlarge or narrow the stability domain of the fractional-order delay-coupled FitzHugh–Nagumo neural model. In order to check the correctness of the acquired outcomes of this article, we present some simulation outcomes via Matlab 7.0 software. The obtained theoretical fruits in this article have momentous theoretical significance in running and constructing networks.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040229\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040229","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的分数阶延迟耦合 FitzHugh-Nagumo 神经模型。利用延迟作为分岔参数的优势,我们探讨了所建立的分数阶延迟耦合 FitzHugh-Nagumo 神经模型的稳定性和分岔。我们获得了分数阶延迟耦合 FitzHugh-Nagumo 神经模型与延迟无关的稳定性和分岔条件。通过设计适当的 PDp 控制器,我们可以有效地控制分数阶延迟耦合 FitzHugh-Nagumo 神经模型的稳定域和分岔现象出现的时间。通过利用合理的混合控制器,我们可以成功地调整所涉及的分数延迟耦合 FitzHugh-Nagumo 神经模型的稳定域和分岔出现时间。研究表明,当延迟越过临界值时,就会出现霍普夫分岔。当我们调整控制参数时,可以找到其他临界值来扩大或缩小分数阶延迟耦合 FitzHugh-Nagumo 神经模型的稳定域。为了检验本文所获成果的正确性,我们通过 Matlab 7.0 软件给出了一些仿真结果。本文获得的理论成果对网络的运行和构建具有重要的理论意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Hopf Bifurcation Exploration and Control Strategies in the Fractional-Order FitzHugh–Nagumo Neural Model Incorporating Delay
In this article, we propose a new fractional-order delay-coupled FitzHugh–Nagumo neural model. Taking advantage of delay as a bifurcation parameter, we explore the stability and bifurcation of the formulated fractional-order delay-coupled FitzHugh–Nagumo neural model. A delay-independent stability and bifurcation conditions for the fractional-order delay-coupled FitzHugh–Nagumo neural model is acquired. By designing a proper PDp controller, we can efficaciously control the stability domain and the time of emergence of the bifurcation phenomenon of the considered fractional delay-coupled FitzHugh–Nagumo neural model. By exploiting a reasonable hybrid controller, we can successfully adjust the stability domain and the bifurcation onset time of the involved fractional delay-coupled FitzHugh–Nagumo neural model. This study shows that when the delay crosses a critical value, a Hopf bifurcation will arise. When we adjust the control parameter, we can find other critical values to enlarge or narrow the stability domain of the fractional-order delay-coupled FitzHugh–Nagumo neural model. In order to check the correctness of the acquired outcomes of this article, we present some simulation outcomes via Matlab 7.0 software. The obtained theoretical fruits in this article have momentous theoretical significance in running and constructing networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信