Juliane Kröplin, Leonie Maier, J. Lenz, Bernd Romeike
{"title":"在独特的数字健康培训文化中实施跨学科数字健康课程时的知识转移和网络:前瞻性分析","authors":"Juliane Kröplin, Leonie Maier, J. Lenz, Bernd Romeike","doi":"10.2196/51389","DOIUrl":null,"url":null,"abstract":"Abstract Background Digital health has been taught at medical faculties for a few years. However, in general, the teaching of digital competencies in medical education and training is still underrepresented. Objective This study aims to analyze the objective acquisition of digital competencies through the implementation of a transdisciplinary digital health curriculum as a compulsory elective subject at a German university. The main subject areas of digital leadership and management, digital learning and didactics, digital communication, robotics, and generative artificial intelligence were developed and taught in a transdisciplinary manner over a period of 1 semester. Methods The participants evaluated the relevant content of the curriculum regarding the competencies already taught in advance during the study, using a Likert scale. The participants’ increase in digital competencies were examined with a pre-post test consisting of 12 questions. Statistical analysis was performed using an unpaired 2-tailed Student t test. A P value of <.05 was considered statistically significant. Furthermore, an analysis of the acceptance of the transdisciplinary approach as well as the application of an alternative examination method (term paper instead of a test with closed and open questions) was carried out. Results In the first year after the introduction of the compulsory elective subject, students of human medicine (n=15), dentistry (n=3), and medical biotechnology (n=2) participated in the curriculum. In total, 13 participants were women (7 men), and 61.1% (n=11) of the participants in human medicine and dentistry were in the preclinical study stage (clinical: n=7, 38.9%). All the aforementioned learning objectives were largely absent in all study sections (preclinical: mean 4.2; clinical: mean 4.4; P=.02). The pre-post test comparison revealed a significant increase of 106% in knowledge (P<.001) among the participants. Conclusions The transdisciplinary teaching of a digital health curriculum, including digital teaching methods, considers perspectives and skills from different disciplines. Our new curriculum facilitates an objective increase in knowledge regarding the complex challenges of the digital transformation of our health care system. Of the 16 student term papers arising from the course, robotics and artificial intelligence attracted the most interest, accounting for 9 of the submissions.","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Transfer and Networking Upon Implementation of a Transdisciplinary Digital Health Curriculum in a Unique Digital Health Training Culture: Prospective Analysis\",\"authors\":\"Juliane Kröplin, Leonie Maier, J. Lenz, Bernd Romeike\",\"doi\":\"10.2196/51389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Digital health has been taught at medical faculties for a few years. However, in general, the teaching of digital competencies in medical education and training is still underrepresented. Objective This study aims to analyze the objective acquisition of digital competencies through the implementation of a transdisciplinary digital health curriculum as a compulsory elective subject at a German university. The main subject areas of digital leadership and management, digital learning and didactics, digital communication, robotics, and generative artificial intelligence were developed and taught in a transdisciplinary manner over a period of 1 semester. Methods The participants evaluated the relevant content of the curriculum regarding the competencies already taught in advance during the study, using a Likert scale. The participants’ increase in digital competencies were examined with a pre-post test consisting of 12 questions. Statistical analysis was performed using an unpaired 2-tailed Student t test. A P value of <.05 was considered statistically significant. Furthermore, an analysis of the acceptance of the transdisciplinary approach as well as the application of an alternative examination method (term paper instead of a test with closed and open questions) was carried out. Results In the first year after the introduction of the compulsory elective subject, students of human medicine (n=15), dentistry (n=3), and medical biotechnology (n=2) participated in the curriculum. In total, 13 participants were women (7 men), and 61.1% (n=11) of the participants in human medicine and dentistry were in the preclinical study stage (clinical: n=7, 38.9%). All the aforementioned learning objectives were largely absent in all study sections (preclinical: mean 4.2; clinical: mean 4.4; P=.02). The pre-post test comparison revealed a significant increase of 106% in knowledge (P<.001) among the participants. Conclusions The transdisciplinary teaching of a digital health curriculum, including digital teaching methods, considers perspectives and skills from different disciplines. Our new curriculum facilitates an objective increase in knowledge regarding the complex challenges of the digital transformation of our health care system. Of the 16 student term papers arising from the course, robotics and artificial intelligence attracted the most interest, accounting for 9 of the submissions.\",\"PeriodicalId\":36236,\"journal\":{\"name\":\"JMIR Medical Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/51389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/51389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Knowledge Transfer and Networking Upon Implementation of a Transdisciplinary Digital Health Curriculum in a Unique Digital Health Training Culture: Prospective Analysis
Abstract Background Digital health has been taught at medical faculties for a few years. However, in general, the teaching of digital competencies in medical education and training is still underrepresented. Objective This study aims to analyze the objective acquisition of digital competencies through the implementation of a transdisciplinary digital health curriculum as a compulsory elective subject at a German university. The main subject areas of digital leadership and management, digital learning and didactics, digital communication, robotics, and generative artificial intelligence were developed and taught in a transdisciplinary manner over a period of 1 semester. Methods The participants evaluated the relevant content of the curriculum regarding the competencies already taught in advance during the study, using a Likert scale. The participants’ increase in digital competencies were examined with a pre-post test consisting of 12 questions. Statistical analysis was performed using an unpaired 2-tailed Student t test. A P value of <.05 was considered statistically significant. Furthermore, an analysis of the acceptance of the transdisciplinary approach as well as the application of an alternative examination method (term paper instead of a test with closed and open questions) was carried out. Results In the first year after the introduction of the compulsory elective subject, students of human medicine (n=15), dentistry (n=3), and medical biotechnology (n=2) participated in the curriculum. In total, 13 participants were women (7 men), and 61.1% (n=11) of the participants in human medicine and dentistry were in the preclinical study stage (clinical: n=7, 38.9%). All the aforementioned learning objectives were largely absent in all study sections (preclinical: mean 4.2; clinical: mean 4.4; P=.02). The pre-post test comparison revealed a significant increase of 106% in knowledge (P<.001) among the participants. Conclusions The transdisciplinary teaching of a digital health curriculum, including digital teaching methods, considers perspectives and skills from different disciplines. Our new curriculum facilitates an objective increase in knowledge regarding the complex challenges of the digital transformation of our health care system. Of the 16 student term papers arising from the course, robotics and artificial intelligence attracted the most interest, accounting for 9 of the submissions.