用于重型发动机的自由成型珩磨气缸套的实验研究

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Frederik Stelljes, Florian Pohlmann-Tasche, Friedrich Dinkelacker
{"title":"用于重型发动机的自由成型珩磨气缸套的实验研究","authors":"Frederik Stelljes, Florian Pohlmann-Tasche, Friedrich Dinkelacker","doi":"10.3390/lubricants12040132","DOIUrl":null,"url":null,"abstract":"For future internal combustion engines, driven by regenerative fuels, efficiency is more important than ever. One approach to reduce the losses inside the piston cylinder unit (PCU) is to improve the alignment of the liner and the piston. Therefore, a cylinder liner with a free form was developed at the Institute of Technical Combustion (ITV) of the Leibniz University Hannover which compensates radial and linear deformations along the stroke. The layout is based on a FEM simulation. The liner was manufactured by the Institute of Production Engineering and Machine Tools (IFW) of Leibniz University of Hannover with a novel turn-milling process. The liner was investigated on the heavy-duty Floating-Liner engine of ITV with a displacement of 1991 ccm and a bore diameter of 130 mm. The experimental results show improvement in the friction losses over the whole engine map in the range of 9% and up to 17.3% compared to a serial liner. Sealing efficiency could be improved up to 28.8%, depending on the operational point. Overall, the investigation aims for lower fuel consumption which would in result fewer emissions.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of a Free-Form Honed Cylinder Liner for Heavy-Duty Engines\",\"authors\":\"Frederik Stelljes, Florian Pohlmann-Tasche, Friedrich Dinkelacker\",\"doi\":\"10.3390/lubricants12040132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For future internal combustion engines, driven by regenerative fuels, efficiency is more important than ever. One approach to reduce the losses inside the piston cylinder unit (PCU) is to improve the alignment of the liner and the piston. Therefore, a cylinder liner with a free form was developed at the Institute of Technical Combustion (ITV) of the Leibniz University Hannover which compensates radial and linear deformations along the stroke. The layout is based on a FEM simulation. The liner was manufactured by the Institute of Production Engineering and Machine Tools (IFW) of Leibniz University of Hannover with a novel turn-milling process. The liner was investigated on the heavy-duty Floating-Liner engine of ITV with a displacement of 1991 ccm and a bore diameter of 130 mm. The experimental results show improvement in the friction losses over the whole engine map in the range of 9% and up to 17.3% compared to a serial liner. Sealing efficiency could be improved up to 28.8%, depending on the operational point. Overall, the investigation aims for lower fuel consumption which would in result fewer emissions.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12040132\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040132","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于未来由再生燃料驱动的内燃机而言,效率比以往任何时候都更为重要。减少活塞气缸单元(PCU)内部损耗的一种方法是改进缸套和活塞的对准。因此,汉诺威莱布尼茨大学技术燃烧研究所(ITV)开发了一种自由形状的气缸套,它可以补偿冲程中的径向和线性变形。其布局以有限元模拟为基础。衬垫由汉诺威莱布尼兹大学生产工程和机床研究所(IFW)采用新型车铣工艺制造。在 ITV 重型浮动衬垫发动机上对衬垫进行了研究,该发动机排量为 1991 立方厘米,缸径 130 毫米。实验结果表明,与串联衬垫相比,整个发动机图上的摩擦损失降低了 9%,最高可达 17.3%。根据工作点的不同,密封效率最高可提高 28.8%。总之,这项研究的目的是降低油耗,从而减少排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of a Free-Form Honed Cylinder Liner for Heavy-Duty Engines
For future internal combustion engines, driven by regenerative fuels, efficiency is more important than ever. One approach to reduce the losses inside the piston cylinder unit (PCU) is to improve the alignment of the liner and the piston. Therefore, a cylinder liner with a free form was developed at the Institute of Technical Combustion (ITV) of the Leibniz University Hannover which compensates radial and linear deformations along the stroke. The layout is based on a FEM simulation. The liner was manufactured by the Institute of Production Engineering and Machine Tools (IFW) of Leibniz University of Hannover with a novel turn-milling process. The liner was investigated on the heavy-duty Floating-Liner engine of ITV with a displacement of 1991 ccm and a bore diameter of 130 mm. The experimental results show improvement in the friction losses over the whole engine map in the range of 9% and up to 17.3% compared to a serial liner. Sealing efficiency could be improved up to 28.8%, depending on the operational point. Overall, the investigation aims for lower fuel consumption which would in result fewer emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信