F. Ahrari, Morteza Nazifi, Fatemeh Mazhari, K. Ghazvini, Shaho Menbari, R. Fekrazad, Kourosh Babaei, Ahmad Banihashemrad
{"title":"姜黄素、纳米姜黄素和赤藓红对变异链球菌浮游培养物和生物膜培养物的光灭活效应","authors":"F. Ahrari, Morteza Nazifi, Fatemeh Mazhari, K. Ghazvini, Shaho Menbari, R. Fekrazad, Kourosh Babaei, Ahmad Banihashemrad","doi":"10.34172/jlms.2024.07","DOIUrl":null,"url":null,"abstract":"Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"25 33","pages":"e7"},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoinactivation Effects of Curcumin, Nano-curcumin, and Erythrosine on Planktonic and Biofilm Cultures of Streptococcus mutans.\",\"authors\":\"F. Ahrari, Morteza Nazifi, Fatemeh Mazhari, K. Ghazvini, Shaho Menbari, R. Fekrazad, Kourosh Babaei, Ahmad Banihashemrad\",\"doi\":\"10.34172/jlms.2024.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"25 33\",\"pages\":\"e7\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jlms.2024.07\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.07","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photoinactivation Effects of Curcumin, Nano-curcumin, and Erythrosine on Planktonic and Biofilm Cultures of Streptococcus mutans.
Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.