{"title":"调查三次强风暴中极坐标和电特征的时间特性:VORTEX-Southeast 实地考察活动的启示","authors":"Milind Sharma, R. Tanamachi, Eric C. Bruning","doi":"10.1175/mwr-d-23-0144.1","DOIUrl":null,"url":null,"abstract":"\nThe dual-polarization radar characteristics of severe storms are commonly used as indicators to estimate the size and intensity of deep convective updrafts. In this study, we track rapid fluctuations in updraft intensity and size by objectively identifying polarimetric fingerprints such as ZDR and KDP columns, which serve as proxies for mixed-phase updraft strength. We quantify the volume of ZDR and KDP columns to evaluate their utility in diagnosing temporal variability in lightning flash characteristics. Specifically, we analyze three severe storms that developed in environments with low-to-moderate instability and strong 0–6 km wind shear in northern Alabama during the 2016-17 VORTEX-Southeast field campaign. In these three cases (a tornadic supercell embedded in stratiform precipitation, a nontornadic supercell, and a supercell embedded within a quasi-linear convective system), we find that the volume of the KDP columns exhibits a stronger correlation with the total flash rate . The higher covariability of KDP column volume with total flash rate suggests that the overall electrification and precipitation microphysics was dominated by cold cloud processes. The lower covariability with ZDR column volume indicates the presence of nonsteady updrafts or a less prominent role of warm rain processes in graupel growth and subsequent electrification. Furthermore, we observe that the majority of cloud-to-ground (CG) lightning strikes carried negative charge to the ground. In contrast to findings from a tornadic supercell over the Great Plains, lightning flash initiations in the Alabama storms primarily occurred outside the footprint of the ZDR and KDP column objects.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"85 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating temporal characteristics of polarimetric and electrical signatures in three severe storms: Insights from the VORTEX-Southeast field campaign\",\"authors\":\"Milind Sharma, R. Tanamachi, Eric C. Bruning\",\"doi\":\"10.1175/mwr-d-23-0144.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe dual-polarization radar characteristics of severe storms are commonly used as indicators to estimate the size and intensity of deep convective updrafts. In this study, we track rapid fluctuations in updraft intensity and size by objectively identifying polarimetric fingerprints such as ZDR and KDP columns, which serve as proxies for mixed-phase updraft strength. We quantify the volume of ZDR and KDP columns to evaluate their utility in diagnosing temporal variability in lightning flash characteristics. Specifically, we analyze three severe storms that developed in environments with low-to-moderate instability and strong 0–6 km wind shear in northern Alabama during the 2016-17 VORTEX-Southeast field campaign. In these three cases (a tornadic supercell embedded in stratiform precipitation, a nontornadic supercell, and a supercell embedded within a quasi-linear convective system), we find that the volume of the KDP columns exhibits a stronger correlation with the total flash rate . The higher covariability of KDP column volume with total flash rate suggests that the overall electrification and precipitation microphysics was dominated by cold cloud processes. The lower covariability with ZDR column volume indicates the presence of nonsteady updrafts or a less prominent role of warm rain processes in graupel growth and subsequent electrification. Furthermore, we observe that the majority of cloud-to-ground (CG) lightning strikes carried negative charge to the ground. In contrast to findings from a tornadic supercell over the Great Plains, lightning flash initiations in the Alabama storms primarily occurred outside the footprint of the ZDR and KDP column objects.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0144.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0144.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Investigating temporal characteristics of polarimetric and electrical signatures in three severe storms: Insights from the VORTEX-Southeast field campaign
The dual-polarization radar characteristics of severe storms are commonly used as indicators to estimate the size and intensity of deep convective updrafts. In this study, we track rapid fluctuations in updraft intensity and size by objectively identifying polarimetric fingerprints such as ZDR and KDP columns, which serve as proxies for mixed-phase updraft strength. We quantify the volume of ZDR and KDP columns to evaluate their utility in diagnosing temporal variability in lightning flash characteristics. Specifically, we analyze three severe storms that developed in environments with low-to-moderate instability and strong 0–6 km wind shear in northern Alabama during the 2016-17 VORTEX-Southeast field campaign. In these three cases (a tornadic supercell embedded in stratiform precipitation, a nontornadic supercell, and a supercell embedded within a quasi-linear convective system), we find that the volume of the KDP columns exhibits a stronger correlation with the total flash rate . The higher covariability of KDP column volume with total flash rate suggests that the overall electrification and precipitation microphysics was dominated by cold cloud processes. The lower covariability with ZDR column volume indicates the presence of nonsteady updrafts or a less prominent role of warm rain processes in graupel growth and subsequent electrification. Furthermore, we observe that the majority of cloud-to-ground (CG) lightning strikes carried negative charge to the ground. In contrast to findings from a tornadic supercell over the Great Plains, lightning flash initiations in the Alabama storms primarily occurred outside the footprint of the ZDR and KDP column objects.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.