Fe(II)Cl2修正物通过刺激甲烷的铁依赖性厌氧氧化作用来抑制池塘甲烷排放。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Quinten Struik, José R. Paranaíba, Martyna Glodowska, S. Kosten, Berber M J W Meulepas, Ana B. Rios-Miguel, M. Jetten, Miquel Lurling, G. Waajen, Thomas P. A. Nijman, A. Veraart
{"title":"Fe(II)Cl2修正物通过刺激甲烷的铁依赖性厌氧氧化作用来抑制池塘甲烷排放。","authors":"Quinten Struik, José R. Paranaíba, Martyna Glodowska, S. Kosten, Berber M J W Meulepas, Ana B. Rios-Miguel, M. Jetten, Miquel Lurling, G. Waajen, Thomas P. A. Nijman, A. Veraart","doi":"10.1093/femsec/fiae061","DOIUrl":null,"url":null,"abstract":"Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe(II)Cl2 amendment suppresses pond methane emissions by stimulating iron-dependent anaerobic oxidation of methane.\",\"authors\":\"Quinten Struik, José R. Paranaíba, Martyna Glodowska, S. Kosten, Berber M J W Meulepas, Ana B. Rios-Miguel, M. Jetten, Miquel Lurling, G. Waajen, Thomas P. A. Nijman, A. Veraart\",\"doi\":\"10.1093/femsec/fiae061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae061\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水生生态系统是全球甲烷(CH4)排放的主要来源。富营养化会刺激甲烷的生成,从而大大提高 CH4 的产生。旨在减少富营养化的缓解措施,如添加金属盐以固定磷酸盐(PO43-),现已成为普遍做法。然而,这些措施对甲烷生成和甲烷滋养群落的影响,以及对甲烷循环的影响在很大程度上仍未得到研究。在这里,我们证明了添加 Fe(II)Cl2 作为 PO43- 粘合剂,在现场实验和批量培养中对微生物的 CH4 循环过程产生了不同的影响。在一个富营养化池塘的围栏中进行的现场实验中,Fe(II)Cl2的应用通过降低净CH4产生量而降低了原位CH4排放量,而沉积物需氧CH4氧化率--在围栏沉积物的分批培养中发现--与对照组没有差别。在经过 Fe(II)Cl2 处理的沉积物中,CH4 净产生率的降低可归因于铁依赖性厌氧 CH4 氧化(Fe-AOM)的刺激。在分批培养过程中,在加入 CH4 后,厌氧 CH4 氧化和 Fe(II)生成立即开始,这表明池塘沉积物中有利的本地铁循环条件和现有的甲烷营养群落可能促成了 Fe-AOM。16S rRNA 测序数据证实,测试沉积物中存在厌氧 CH4 氧化古菌以及铁还原菌和铁氧化菌。因此,施用 Fe(II)Cl2 除了能对抗富营养化外,还能通过减少微生物的净 CH4 产量和刺激 Fe-AOM 来减少 CH4 排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fe(II)Cl2 amendment suppresses pond methane emissions by stimulating iron-dependent anaerobic oxidation of methane.
Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信