{"title":"窗户位置和排气流速对住宅厨房抽油烟机性能的影响:经过验证的数值方法","authors":"Yi-An Lin, Ying-Chieh Chan, Wan-Chen Lee","doi":"10.1155/2024/8834373","DOIUrl":null,"url":null,"abstract":"<p>Previous studies showed that opening windows could help with kitchen ventilation in pollutant removal. However, no studies have systematically examined the impacts of window positions on kitchen hood performance, and there is insufficient information on indoor airflow characteristics and pollutant distribution from makeup air through open windows. Therefore, the objective of this study was to use a validated computational fluid dynamics approach with CO<sub>2</sub> as an indoor air quality indicator (a surrogate for cooking emissions) to understand the impacts of exhaust flow rate and the window opening position on the flow characteristics, concentration distribution, and capture efficiency (CE) of the hood. We conducted four-point validation tests of the numerical models based on CO<sub>2</sub> concentration and temperature measurements under steady-state conditions. The validated models were subsequently used in simulations to understand the effects of six different window opening positions and the two exhaust flow rates on exposure. We found that the CO<sub>2</sub> concentration could be better reduced by having windows open at the higher location. Generally, the front windows were more effective with CE > 80<i>%</i>, followed by the back and the side windows, respectively. We also found that as the exhaust flow rate increased from 6.72 to 12.16 m<sup>3</sup>/min, CE reached >75% for all window positions, where the most significant increase was 1.58 times for the lower side window. To sum up, changing the relative position of the window and the exhaust hood could help disperse the incoming airflow from the window, improve the kitchen’s overall ventilation, and reduce pollutant concentration.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Window Position and Exhaust Flow Rate on Residential Kitchen Hood Performance: A Validated Numerical Approach\",\"authors\":\"Yi-An Lin, Ying-Chieh Chan, Wan-Chen Lee\",\"doi\":\"10.1155/2024/8834373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies showed that opening windows could help with kitchen ventilation in pollutant removal. However, no studies have systematically examined the impacts of window positions on kitchen hood performance, and there is insufficient information on indoor airflow characteristics and pollutant distribution from makeup air through open windows. Therefore, the objective of this study was to use a validated computational fluid dynamics approach with CO<sub>2</sub> as an indoor air quality indicator (a surrogate for cooking emissions) to understand the impacts of exhaust flow rate and the window opening position on the flow characteristics, concentration distribution, and capture efficiency (CE) of the hood. We conducted four-point validation tests of the numerical models based on CO<sub>2</sub> concentration and temperature measurements under steady-state conditions. The validated models were subsequently used in simulations to understand the effects of six different window opening positions and the two exhaust flow rates on exposure. We found that the CO<sub>2</sub> concentration could be better reduced by having windows open at the higher location. Generally, the front windows were more effective with CE > 80<i>%</i>, followed by the back and the side windows, respectively. We also found that as the exhaust flow rate increased from 6.72 to 12.16 m<sup>3</sup>/min, CE reached >75% for all window positions, where the most significant increase was 1.58 times for the lower side window. To sum up, changing the relative position of the window and the exhaust hood could help disperse the incoming airflow from the window, improve the kitchen’s overall ventilation, and reduce pollutant concentration.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834373\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834373","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
以前的研究表明,开窗通风有助于厨房去除污染物。但是,还没有研究系统地考察过窗户位置对厨房抽油烟机性能的影响,而且有关室内气流特性和通过开窗补风的污染物分布的信息也不充分。因此,本研究的目的是使用经过验证的计算流体动力学方法,以二氧化碳作为室内空气质量指标(烹饪排放的替代物),了解排气流速和开窗位置对吸油烟机的气流特性、浓度分布和捕获效率(CE)的影响。我们根据稳态条件下的二氧化碳浓度和温度测量结果,对数值模型进行了四点验证测试。经过验证的模型随后被用于模拟,以了解六种不同的开窗位置和两种排气流速对暴露的影响。我们发现,在较高位置开窗可以更好地降低二氧化碳浓度。一般来说,前窗的效果更好,CE>80%,其次分别是后窗和侧窗。我们还发现,当排气流速从 6.72 m3/min 增加到 12.16 m3/min 时,所有窗户位置的 CE 都大于 75%,其中较低侧窗的 CE 增加最显著,为 1.58 倍。总之,改变窗户和排气罩的相对位置有助于分散从窗户进入的气流,改善厨房的整体通风,降低污染物浓度。
Effects of Window Position and Exhaust Flow Rate on Residential Kitchen Hood Performance: A Validated Numerical Approach
Previous studies showed that opening windows could help with kitchen ventilation in pollutant removal. However, no studies have systematically examined the impacts of window positions on kitchen hood performance, and there is insufficient information on indoor airflow characteristics and pollutant distribution from makeup air through open windows. Therefore, the objective of this study was to use a validated computational fluid dynamics approach with CO2 as an indoor air quality indicator (a surrogate for cooking emissions) to understand the impacts of exhaust flow rate and the window opening position on the flow characteristics, concentration distribution, and capture efficiency (CE) of the hood. We conducted four-point validation tests of the numerical models based on CO2 concentration and temperature measurements under steady-state conditions. The validated models were subsequently used in simulations to understand the effects of six different window opening positions and the two exhaust flow rates on exposure. We found that the CO2 concentration could be better reduced by having windows open at the higher location. Generally, the front windows were more effective with CE > 80%, followed by the back and the side windows, respectively. We also found that as the exhaust flow rate increased from 6.72 to 12.16 m3/min, CE reached >75% for all window positions, where the most significant increase was 1.58 times for the lower side window. To sum up, changing the relative position of the window and the exhaust hood could help disperse the incoming airflow from the window, improve the kitchen’s overall ventilation, and reduce pollutant concentration.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.