{"title":"用有效熵衡量任务约束对自组织系统代理团队规模的影响","authors":"Hao Ji, Yan Jin","doi":"10.1115/1.4065343","DOIUrl":null,"url":null,"abstract":"\n Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Task Constraint on Agent Team Size of Self-Organizing Systems Measured by Effective Entropy\",\"authors\":\"Hao Ji, Yan Jin\",\"doi\":\"10.1115/1.4065343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065343\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Impact of Task Constraint on Agent Team Size of Self-Organizing Systems Measured by Effective Entropy
Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping