用有效熵衡量任务约束对自组织系统代理团队规模的影响

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hao Ji, Yan Jin
{"title":"用有效熵衡量任务约束对自组织系统代理团队规模的影响","authors":"Hao Ji, Yan Jin","doi":"10.1115/1.4065343","DOIUrl":null,"url":null,"abstract":"\n Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Task Constraint on Agent Team Size of Self-Organizing Systems Measured by Effective Entropy\",\"authors\":\"Hao Ji, Yan Jin\",\"doi\":\"10.1115/1.4065343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065343\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自组织系统可以在不可预测的情况下执行复杂任务,并具有很强的适应能力。先前的工作引入了基于多代理强化学习的模型,作为解决复杂任务规则生成问题的设计方法。研究人员设计了一种深度多代理强化学习算法,用于训练自组织代理获取任务领域和社会规则的知识。结果表明,存在一个最佳的代理数量,可以实现良好的学习稳定性和系统性能。然而,由于任务的动态限制和训练前代理知识的不可得性,找到这样的数量并非易事。虽然大量的训练最终可以揭示最佳数量,但这需要对所有考虑的代理数量进行模拟训练,计算成本高且耗时。因此,如何用最少的训练实验来预测自组织系统的最佳团队规模仍然是个问题。在本文中,我们提出了一种衡量自组织系统复杂性的方法,称为有效熵,它考虑了任务约束。本文提出了一种系统方法,包括几个关键概念和步骤,用于计算给定任务环境下的有效熵,并在推箱案例研究中进行了说明和测试。结果表明,我们提出的方法和复杂度测量方法可以准确预测自组织系统中代理的最佳数量,而且训练模拟可以减少 10 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Task Constraint on Agent Team Size of Self-Organizing Systems Measured by Effective Entropy
Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time-consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this paper, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信