通过界面工程增强 Bi2-xSbxTe3 纳米薄片的电学特性

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xudong Wu, Junjie Ding, Wenjun Cui, Weixiao Lin, Zefan Xue, Zhi Yang, Jiahui Liu, Xiaolei Nie, Wanting Zhu, Gustaaf Van Tendeloo, Xiahan Sang
{"title":"通过界面工程增强 Bi2-xSbxTe3 纳米薄片的电学特性","authors":"Xudong Wu,&nbsp;Junjie Ding,&nbsp;Wenjun Cui,&nbsp;Weixiao Lin,&nbsp;Zefan Xue,&nbsp;Zhi Yang,&nbsp;Jiahui Liu,&nbsp;Xiaolei Nie,&nbsp;Wanting Zhu,&nbsp;Gustaaf Van Tendeloo,&nbsp;Xiahan Sang","doi":"10.1002/eem2.12755","DOIUrl":null,"url":null,"abstract":"<p>The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi<sub>2−<i>x</i></sub>Sb<sub><i>x</i></sub>Te<sub>3</sub> (<i>x</i> = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi<sub>2−<i>x</i></sub>Sb<sub><i>x</i></sub>Te<sub>3</sub> thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi<sub>1.8</sub>Sb<sub>0.2</sub>Te<sub>3</sub> nanoflake films reaches 1.72 mW m<sup>−1</sup> K<sup>−2</sup>, which is 43% higher than that of a pure Bi<sub>2</sub>Te<sub>3</sub> thin film.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12755","citationCount":"0","resultStr":"{\"title\":\"Enhanced Electrical Properties of Bi2−xSbxTe3 Nanoflake Thin Films Through Interface Engineering\",\"authors\":\"Xudong Wu,&nbsp;Junjie Ding,&nbsp;Wenjun Cui,&nbsp;Weixiao Lin,&nbsp;Zefan Xue,&nbsp;Zhi Yang,&nbsp;Jiahui Liu,&nbsp;Xiaolei Nie,&nbsp;Wanting Zhu,&nbsp;Gustaaf Van Tendeloo,&nbsp;Xiahan Sang\",\"doi\":\"10.1002/eem2.12755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi<sub>2−<i>x</i></sub>Sb<sub><i>x</i></sub>Te<sub>3</sub> (<i>x</i> = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi<sub>2−<i>x</i></sub>Sb<sub><i>x</i></sub>Te<sub>3</sub> thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi<sub>1.8</sub>Sb<sub>0.2</sub>Te<sub>3</sub> nanoflake films reaches 1.72 mW m<sup>−1</sup> K<sup>−2</sup>, which is 43% higher than that of a pure Bi<sub>2</sub>Te<sub>3</sub> thin film.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12755\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12755\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12755","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于具有复杂界面微观结构的热电材料来说,界面的结构-性能关系很难探测。设计具有简单、结构均匀界面的热电材料为了解这些界面如何影响传输特性提供了便捷的方法。在此,我们采用水热法合成了 Bi2-xSbxTe3(x = 0、0.1、0.2、0.4)纳米片,并通过旋涂将纳米片堆叠在一起制备了界面主要为 (0001) 的 Bi2-xSbxTe3 薄膜。利用像差校正扫描透射电子显微镜在原子尺度上系统地研究了退火温度和 Sb 含量对 (0001) 界面结构的影响。退火和掺杂锑促进了原子沿 (0001) 界面在相邻纳米片之间的扩散和迁移。因此,它增强了界面连通性并改善了电传输特性。界面反应会产生新的界面,从而增加散射和塞贝克系数。由于同时优化了电导率和塞贝克系数,Bi1.8Sb0.2Te3 纳米薄片薄膜的最大功率因数达到 1.72 mW m-1 K-2,比纯 Bi2Te3 薄膜高 43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Electrical Properties of Bi2−xSbxTe3 Nanoflake Thin Films Through Interface Engineering

Enhanced Electrical Properties of Bi2−xSbxTe3 Nanoflake Thin Films Through Interface Engineering

Enhanced Electrical Properties of Bi2−xSbxTe3 Nanoflake Thin Films Through Interface Engineering

The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2−xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2−xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m−1 K−2, which is 43% higher than that of a pure Bi2Te3 thin film.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信