离散张量积 BGG 序列:样条曲线和有限元

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
F. Bonizzoni, Kaibo Hu, Guido Kanschat, Duygu Sap
{"title":"离散张量积 BGG 序列:样条曲线和有限元","authors":"F. Bonizzoni, Kaibo Hu, Guido Kanschat, Duygu Sap","doi":"10.1090/mcom/3969","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and \n\n \n \n div\n ⁡\n div\n \n \\operatorname {div}\\operatorname {div}\n \n\n complexes as examples for our construction.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete tensor product BGG sequences: Splines and finite elements\",\"authors\":\"F. Bonizzoni, Kaibo Hu, Guido Kanschat, Duygu Sap\",\"doi\":\"10.1090/mcom/3969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and \\n\\n \\n \\n div\\n ⁡\\n div\\n \\n \\\\operatorname {div}\\\\operatorname {div}\\n \\n\\n complexes as examples for our construction.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过使用一维片状多项式空间的张量乘结构(如样条空间和有限元空间),对任意维度立方网格上的伯恩斯坦-格尔芬-格尔芬图和复数进行了系统离散化。我们以 Hessian、弹性和 div div \operatorname {div}\operatorname {div} 复数的构造为例,演示了我们的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete tensor product BGG sequences: Splines and finite elements
In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and div ⁡ div \operatorname {div}\operatorname {div} complexes as examples for our construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信