维度降低问题:全面探讨离散主成分分析法(DPCA)和离散多重对应分析法(DMCA)

M. Fordellone
{"title":"维度降低问题:全面探讨离散主成分分析法(DPCA)和离散多重对应分析法(DMCA)","authors":"M. Fordellone","doi":"10.54103/2282-0930/22513","DOIUrl":null,"url":null,"abstract":"This paper delves into the realm of advanced data analysis, focusing on two powerful dimensionality reduction methods: Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence Analysis (DMCA). Methodological marvels in their own right, these approaches are scrutinized for their unique properties and applications across diverse domains. We navigate through the intricacies of their algorithms and explore how they unveil patterns within complex datasets. The comparative analysis highlights the strengths and weaknesses of DPCA and DMCA, shedding light on their distinct contributions to the analytical landscape. This paper serves as a comprehensive guide for researchers and analysts seeking deeper insights into these cutting-edge techniques for dimensional reduction.","PeriodicalId":510132,"journal":{"name":"Epidemiology, Biostatistics, and Public Health","volume":" 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensionality Reduction problem: a Comprehensive Exploration of Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence Analysis (DMCA)\",\"authors\":\"M. Fordellone\",\"doi\":\"10.54103/2282-0930/22513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper delves into the realm of advanced data analysis, focusing on two powerful dimensionality reduction methods: Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence Analysis (DMCA). Methodological marvels in their own right, these approaches are scrutinized for their unique properties and applications across diverse domains. We navigate through the intricacies of their algorithms and explore how they unveil patterns within complex datasets. The comparative analysis highlights the strengths and weaknesses of DPCA and DMCA, shedding light on their distinct contributions to the analytical landscape. This paper serves as a comprehensive guide for researchers and analysts seeking deeper insights into these cutting-edge techniques for dimensional reduction.\",\"PeriodicalId\":510132,\"journal\":{\"name\":\"Epidemiology, Biostatistics, and Public Health\",\"volume\":\" 32\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology, Biostatistics, and Public Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54103/2282-0930/22513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology, Biostatistics, and Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54103/2282-0930/22513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将深入探讨高级数据分析领域,重点介绍两种强大的降维方法:离散主成分分析(Disjoint Principal Component Analysis,DPCA)和离散多重对应分析(Disjoint Multiple Correspondence Analysis,DMCA)。这两种方法本身就是方法学上的奇迹,它们因其独特的特性和在不同领域的应用而备受推崇。我们浏览了这些方法的复杂算法,并探讨了它们如何揭示复杂数据集中的模式。对比分析突出了 DPCA 和 DMCA 的优缺点,揭示了它们对分析领域的独特贡献。本文是研究人员和分析人员深入了解这些尖端降维技术的全面指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensionality Reduction problem: a Comprehensive Exploration of Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence Analysis (DMCA)
This paper delves into the realm of advanced data analysis, focusing on two powerful dimensionality reduction methods: Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence Analysis (DMCA). Methodological marvels in their own right, these approaches are scrutinized for their unique properties and applications across diverse domains. We navigate through the intricacies of their algorithms and explore how they unveil patterns within complex datasets. The comparative analysis highlights the strengths and weaknesses of DPCA and DMCA, shedding light on their distinct contributions to the analytical landscape. This paper serves as a comprehensive guide for researchers and analysts seeking deeper insights into these cutting-edge techniques for dimensional reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信