Zhifang Zhang, Junkui Ma, Xia Yang, Shan Liang, Yucheng Liu, Yaqin Yuan, Qianjin Liang, Yanting Shen, Guoan Zhou, Min Zhang, Zhixi Tian, Shulin Liu
{"title":"天然 GmACO1 等位基因变异赋予大豆耐旱性并影响其结核形成","authors":"Zhifang Zhang, Junkui Ma, Xia Yang, Shan Liang, Yucheng Liu, Yaqin Yuan, Qianjin Liang, Yanting Shen, Guoan Zhou, Min Zhang, Zhixi Tian, Shulin Liu","doi":"10.1007/s42994-024-00160-w","DOIUrl":null,"url":null,"abstract":"<div><p>Soybean [<i>Glycine max</i> (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that <i>GmACO1</i>, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that <i>GmACO1</i> expression was reduced after rhizobial infection, and that <i>GmACO1</i> negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00160-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Natural GmACO1 allelic variations confer drought tolerance and influence nodule formation in soybean\",\"authors\":\"Zhifang Zhang, Junkui Ma, Xia Yang, Shan Liang, Yucheng Liu, Yaqin Yuan, Qianjin Liang, Yanting Shen, Guoan Zhou, Min Zhang, Zhixi Tian, Shulin Liu\",\"doi\":\"10.1007/s42994-024-00160-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soybean [<i>Glycine max</i> (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that <i>GmACO1</i>, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that <i>GmACO1</i> expression was reduced after rhizobial infection, and that <i>GmACO1</i> negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding.</p></div>\",\"PeriodicalId\":53135,\"journal\":{\"name\":\"aBIOTECH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42994-024-00160-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"aBIOTECH\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42994-024-00160-w\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-024-00160-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Natural GmACO1 allelic variations confer drought tolerance and influence nodule formation in soybean
Soybean [Glycine max (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that GmACO1, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that GmACO1 expression was reduced after rhizobial infection, and that GmACO1 negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding.