Fan-Bin Wu, Sheng-Jian Zhou, Jiahu Ouyang, Shu-Qi Wang, Lei Chen
{"title":"二维材料的结构超润滑性:机理、特性、影响因素和应用","authors":"Fan-Bin Wu, Sheng-Jian Zhou, Jiahu Ouyang, Shu-Qi Wang, Lei Chen","doi":"10.3390/lubricants12040138","DOIUrl":null,"url":null,"abstract":"Structural superlubricity refers to the lubrication state in which the friction between two crystalline surfaces in incommensurate contact is nearly zero; this has become an important branch in recent tribological research. Two-dimensional (2D) materials with structural superlubricity such as graphene, MoS2, h-BN, and alike, which possess unique layered structures and excellent friction behavior, will bring significant advances in the development of high-performance microelectromechanical systems (MEMS), as well as in space exploration, space transportation, precision manufacturing, and high-end equipment. Herein, the review mainly introduces the tribological properties of structural superlubricity among typical 2D layered materials and summarizes in detail the underlying mechanisms responsible for superlubricity on sliding surfaces and the influencing factors including the size and layer effect, elasticity effect, moiré superlattice, edge effect, and other external factors like normal load, velocity, and temperature, etc. Finally, the difficulties in achieving robust superlubricity from micro to macroscale were focused on, and the prospects and suggestions were discussed.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Superlubricity of Two-Dimensional Materials: Mechanisms, Properties, Influencing Factors, and Applications\",\"authors\":\"Fan-Bin Wu, Sheng-Jian Zhou, Jiahu Ouyang, Shu-Qi Wang, Lei Chen\",\"doi\":\"10.3390/lubricants12040138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural superlubricity refers to the lubrication state in which the friction between two crystalline surfaces in incommensurate contact is nearly zero; this has become an important branch in recent tribological research. Two-dimensional (2D) materials with structural superlubricity such as graphene, MoS2, h-BN, and alike, which possess unique layered structures and excellent friction behavior, will bring significant advances in the development of high-performance microelectromechanical systems (MEMS), as well as in space exploration, space transportation, precision manufacturing, and high-end equipment. Herein, the review mainly introduces the tribological properties of structural superlubricity among typical 2D layered materials and summarizes in detail the underlying mechanisms responsible for superlubricity on sliding surfaces and the influencing factors including the size and layer effect, elasticity effect, moiré superlattice, edge effect, and other external factors like normal load, velocity, and temperature, etc. Finally, the difficulties in achieving robust superlubricity from micro to macroscale were focused on, and the prospects and suggestions were discussed.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12040138\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Structural Superlubricity of Two-Dimensional Materials: Mechanisms, Properties, Influencing Factors, and Applications
Structural superlubricity refers to the lubrication state in which the friction between two crystalline surfaces in incommensurate contact is nearly zero; this has become an important branch in recent tribological research. Two-dimensional (2D) materials with structural superlubricity such as graphene, MoS2, h-BN, and alike, which possess unique layered structures and excellent friction behavior, will bring significant advances in the development of high-performance microelectromechanical systems (MEMS), as well as in space exploration, space transportation, precision manufacturing, and high-end equipment. Herein, the review mainly introduces the tribological properties of structural superlubricity among typical 2D layered materials and summarizes in detail the underlying mechanisms responsible for superlubricity on sliding surfaces and the influencing factors including the size and layer effect, elasticity effect, moiré superlattice, edge effect, and other external factors like normal load, velocity, and temperature, etc. Finally, the difficulties in achieving robust superlubricity from micro to macroscale were focused on, and the prospects and suggestions were discussed.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding