{"title":"使用均值中值的多维随机网的超多项式精度","authors":"Zexin Pan, Art Owen","doi":"10.1090/mcom/3880","DOIUrl":null,"url":null,"abstract":"<p>We study approximate integration of a function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> based on taking the median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integral estimates derived from independently randomized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis t comma m comma s right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(t,m,s)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-nets in base <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is analytic over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the probability that any one randomized net’s estimate has an error larger than <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript minus c m squared slash s\">\n <mml:semantics>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">2^{-cm^2/s}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> times a quantity depending on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash StartRoot m EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msqrt>\n <mml:mi>m</mml:mi>\n </mml:msqrt>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(1/\\sqrt {m})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 3 log left-parenthesis 2 right-parenthesis slash pi squared almost-equals 0.21\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:mn>0.21</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>3\\log (2)/\\pi ^2\\approx 0.21</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, the median of the distribution of these scrambled nets has an error that is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n Superscript minus c log left-parenthesis n right-parenthesis slash s Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(n^{-c\\log (n)/s})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 2 Superscript m\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>m</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=2^m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> function evaluations. The sample median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws attains this rate too, so long as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r slash m squared\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r/m^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bounded away from zero as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-polynomial accuracy of multidimensional randomized nets using the median-of-means\",\"authors\":\"Zexin Pan, Art Owen\",\"doi\":\"10.1090/mcom/3880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study approximate integration of a function <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma 1 right-bracket Superscript s\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mi>s</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[0,1]^s</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> based on taking the median of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 r minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2r-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> integral estimates derived from independently randomized <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis t comma m comma s right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>s</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(t,m,s)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-nets in base <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is analytic over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma 1 right-bracket Superscript s\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mi>s</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[0,1]^s</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then the probability that any one randomized net’s estimate has an error larger than <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 Superscript minus c m squared slash s\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mn>2</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>c</mml:mi>\\n <mml:msup>\\n <mml:mi>m</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>s</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2^{-cm^2/s}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> times a quantity depending on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis 1 slash StartRoot m EndRoot right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:msqrt>\\n <mml:mi>m</mml:mi>\\n </mml:msqrt>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(1/\\\\sqrt {m})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c greater-than 3 log left-parenthesis 2 right-parenthesis slash pi squared almost-equals 0.21\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>c</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mi>log</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:msup>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mo>≈<!-- ≈ --></mml:mo>\\n <mml:mn>0.21</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">c>3\\\\log (2)/\\\\pi ^2\\\\approx 0.21</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As a result, the median of the distribution of these scrambled nets has an error that is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis n Superscript minus c log left-parenthesis n right-parenthesis slash s Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>n</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>c</mml:mi>\\n <mml:mi>log</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>s</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(n^{-c\\\\log (n)/s})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n equals 2 Superscript m\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mn>2</mml:mn>\\n <mml:mi>m</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n=2^m</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> function evaluations. The sample median of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 r minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2r-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> independent draws attains this rate too, so long as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r slash m squared\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>r</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:msup>\\n <mml:mi>m</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r/m^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is bounded away from zero as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m right-arrow normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>m</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m\\\\to \\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 r minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2r-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> independent draws.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了函数 f f 在 [ 0 , 1 ] s [0,1]^s 上的近似积分,其基础是取 2 r - 1 2r-1 积分估计值的中值,这些估计值来自以 2 2 为底的独立随机 ( t , m , s ) (t,m,s) 网。这些网络是通过马托塞克随机线性扰乱和随机数字移位随机化的。如果 f f 在 [ 0 , 1 ] s [0,1]^s 上是解析的,那么对于任意 c > 3 log ( 2 ) /π 2 ≈ 0.21 c>3\log (2)/\pi ^2\approx 0.21,任何一个随机网的估计值误差大于 2 - c m 2 / s 2^{-cm^2/s} 倍的概率是 O ( 1 / m ) O(1/\sqrt {m})。因此,这些乱码网分布的中值误差为 O ( n - c log ( n ) / s ) O(n^{-c\log (n)/s}) for n = 2 m n=2^m function evaluations.只要 r / m 2 r/m^2 在 m → ∞ m\to \infty 时离零有界,2 r - 1 2r-1 独立抽样的样本中值也能达到这个比率。我们包括有限精度估计的结果,以及取 2 r - 1 2r-1 独立抽样的平均值的一些非渐近比较。
Super-polynomial accuracy of multidimensional randomized nets using the median-of-means
We study approximate integration of a function ff over [0,1]s[0,1]^s based on taking the median of 2r−12r-1 integral estimates derived from independently randomized (t,m,s)(t,m,s)-nets in base 22. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If ff is analytic over [0,1]s[0,1]^s, then the probability that any one randomized net’s estimate has an error larger than 2−cm2/s2^{-cm^2/s} times a quantity depending on ff is O(1/m)O(1/\sqrt {m}) for any c>3log(2)/π2≈0.21c>3\log (2)/\pi ^2\approx 0.21. As a result, the median of the distribution of these scrambled nets has an error that is O(n−clog(n)/s)O(n^{-c\log (n)/s}) for n=2mn=2^m function evaluations. The sample median of 2r−12r-1 independent draws attains this rate too, so long as r/m2r/m^2 is bounded away from zero as m→∞m\to \infty. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of 2r−12r-1 independent draws.