І.М. Александрович, Світлана Ляшко, Н.І. Ляшко, Микола Сидоров
{"title":"确定迭代双曲方程的解","authors":"І.М. Александрович, Світлана Ляшко, Н.І. Ляшко, Микола Сидоров","doi":"10.15407/dopovidi2024.02.003","DOIUrl":null,"url":null,"abstract":"При вивченні задач, пов’язаних з явищами вібрації та іншими задачами механіки та математичної фізики, широко використовуються диференційні рівняння гіперболічного типу та їх ітерації. Методами розв’язування таких рівнянь є створення диференціальних та інтегральних операторів. У роботі побудовано диференціальні оператори, які переводять довільні функції в регулярні розв’язки рівняння гіперболічного типу другого та вищих порядків. Розв’язано задачу Рік’є для рівняння гіперболічного типу четвертого порядку.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Визначення розв’язку ітерованого гіперболічного рівняння\",\"authors\":\"І.М. Александрович, Світлана Ляшко, Н.І. Ляшко, Микола Сидоров\",\"doi\":\"10.15407/dopovidi2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"При вивченні задач, пов’язаних з явищами вібрації та іншими задачами механіки та математичної фізики, широко використовуються диференційні рівняння гіперболічного типу та їх ітерації. Методами розв’язування таких рівнянь є створення диференціальних та інтегральних операторів. У роботі побудовано диференціальні оператори, які переводять довільні функції в регулярні розв’язки рівняння гіперболічного типу другого та вищих порядків. Розв’язано задачу Рік’є для рівняння гіперболічного типу четвертого порядку.\",\"PeriodicalId\":20898,\"journal\":{\"name\":\"Reports of the National Academy of Sciences of Ukraine\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of the National Academy of Sciences of Ukraine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/dopovidi2024.02.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2024.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Визначення розв’язку ітерованого гіперболічного рівняння
При вивченні задач, пов’язаних з явищами вібрації та іншими задачами механіки та математичної фізики, широко використовуються диференційні рівняння гіперболічного типу та їх ітерації. Методами розв’язування таких рівнянь є створення диференціальних та інтегральних операторів. У роботі побудовано диференціальні оператори, які переводять довільні функції в регулярні розв’язки рівняння гіперболічного типу другого та вищих порядків. Розв’язано задачу Рік’є для рівняння гіперболічного типу четвертого порядку.