{"title":"f(R,G)$f(R,\\mathcal {G})$引力中的弹跳宇宙学与热力学分析","authors":"Shaily, Jainendra Kumar Singh, Akanksha Singh","doi":"10.1002/prop.202300244","DOIUrl":null,"url":null,"abstract":"<p>The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar (<span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$ R$</annotation>\n </semantics></math>) and the Gauss-Bonnet invariant (<span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>) is studied. The function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(R,\\mathcal {G})$</annotation>\n </semantics></math> is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$ a$</annotation>\n </semantics></math>. In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point (<span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$ t=0$</annotation>\n </semantics></math>) is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$q \\rightarrow \\infty$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t=0$</annotation>\n </semantics></math> and approaches a finite value <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>→</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>β</mi>\n </mfrac>\n </mrow>\n <annotation>$ q \\rightarrow -1+\\frac{1}{\\beta }$</annotation>\n </semantics></math> in later times (<span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t \\rightarrow \\infty$</annotation>\n </semantics></math>). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bouncing Cosmology in \\n \\n \\n f\\n (\\n R\\n ,\\n G\\n )\\n \\n $f(R,\\\\mathcal {G})$\\n Gravity with Thermodynamic Analysis\",\"authors\":\"Shaily, Jainendra Kumar Singh, Akanksha Singh\",\"doi\":\"10.1002/prop.202300244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar (<span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$ R$</annotation>\\n </semantics></math>) and the Gauss-Bonnet invariant (<span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math>) is studied. The function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(R,\\\\mathcal {G})$</annotation>\\n </semantics></math> is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$ a$</annotation>\\n </semantics></math>. In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$ t=0$</annotation>\\n </semantics></math>) is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$q \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t=0$</annotation>\\n </semantics></math> and approaches a finite value <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>→</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>β</mi>\\n </mfrac>\\n </mrow>\\n <annotation>$ q \\\\rightarrow -1+\\\\frac{1}{\\\\beta }$</annotation>\\n </semantics></math> in later times (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$t \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 6\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300244\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300244","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Bouncing Cosmology in
f
(
R
,
G
)
$f(R,\mathcal {G})$
Gravity with Thermodynamic Analysis
The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar () and the Gauss-Bonnet invariant () is studied. The function is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor . In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point () is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., at and approaches a finite value in later times (). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.