f(R,G)$f(R,\mathcal {G})$引力中的弹跳宇宙学与热力学分析

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shaily, Jainendra Kumar Singh, Akanksha Singh
{"title":"f(R,G)$f(R,\\mathcal {G})$引力中的弹跳宇宙学与热力学分析","authors":"Shaily,&nbsp;Jainendra Kumar Singh,&nbsp;Akanksha Singh","doi":"10.1002/prop.202300244","DOIUrl":null,"url":null,"abstract":"<p>The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar (<span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$ R$</annotation>\n </semantics></math>) and the Gauss-Bonnet invariant (<span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>) is studied. The function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(R,\\mathcal {G})$</annotation>\n </semantics></math> is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$ a$</annotation>\n </semantics></math>. In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point (<span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$ t=0$</annotation>\n </semantics></math>) is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$q \\rightarrow \\infty$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t=0$</annotation>\n </semantics></math> and approaches a finite value <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>→</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>β</mi>\n </mfrac>\n </mrow>\n <annotation>$ q \\rightarrow -1+\\frac{1}{\\beta }$</annotation>\n </semantics></math> in later times (<span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t \\rightarrow \\infty$</annotation>\n </semantics></math>). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bouncing Cosmology in \\n \\n \\n f\\n (\\n R\\n ,\\n G\\n )\\n \\n $f(R,\\\\mathcal {G})$\\n Gravity with Thermodynamic Analysis\",\"authors\":\"Shaily,&nbsp;Jainendra Kumar Singh,&nbsp;Akanksha Singh\",\"doi\":\"10.1002/prop.202300244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar (<span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$ R$</annotation>\\n </semantics></math>) and the Gauss-Bonnet invariant (<span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math>) is studied. The function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(R,\\\\mathcal {G})$</annotation>\\n </semantics></math> is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$ a$</annotation>\\n </semantics></math>. In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$ t=0$</annotation>\\n </semantics></math>) is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$q \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t=0$</annotation>\\n </semantics></math> and approaches a finite value <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>→</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>β</mi>\\n </mfrac>\\n </mrow>\\n <annotation>$ q \\\\rightarrow -1+\\\\frac{1}{\\\\beta }$</annotation>\\n </semantics></math> in later times (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$t \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 6\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300244\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300244","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了包含利玛窦标量()和高斯-波内特不变量()项的修正引力理论中的宇宙演化。假定尺度因子的参数化适当,利用电子折叠数和重构技术获得了该函数。在这个模型中,分析了各种宇宙学参数,分别借助模型弹跳点前后宇宙的收缩和膨胀阶段来解释宇宙的弹跳情景。结果发现了违反空能量条件的现象。此外,在弹跳点()附近还发现了模型的幽灵凝聚物性质。此外,减速参数在弹跳点并不确定,也就是说,在弹跳点并不确定,并且在之后的时间里接近有限值()。最后,讨论了霍金温度的演变和热力学第二定律在我们模型的反弹情景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bouncing Cosmology in f ( R , G ) $f(R,\mathcal {G})$ Gravity with Thermodynamic Analysis

The evolution of the universe in a modified gravity theory that includes the terms Ricci scalar ( R $ R$ ) and the Gauss-Bonnet invariant ( G $\mathcal {G}$ ) is studied. The function f ( R , G ) $f(R,\mathcal {G})$ is obtained using the e-folding number and reconstruction technique by assuming an appropriate parameterization of the scale factor a $ a$ . In this model, the various cosmological parameters are analyzed to explicate the bouncing scenario of the universe with the help of the contraction and expansion phases of the universe before and after the bouncing point of the model, respectively. A violation of the null energy condition is found. Additionally, the ghost condensate nature of the model in the neighborhood of the bouncing point ( t = 0 $ t=0$ ) is seen. Furthermore, the deceleration parameter is not defined at the bouncing point, i.e., q $q \rightarrow \infty$ at t = 0 $t=0$ and approaches a finite value q 1 + 1 β $ q \rightarrow -1+\frac{1}{\beta }$ in later times ( t $t \rightarrow \infty$ ). Finally, the evolution of the Hawking temperature and the validity of the second law of thermodynamics in the bouncing scenario of our model are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信