{"title":"用银纳米粒子装饰的氧化锌纳米棒增强聚氨酯泡沫:一种改善抗菌和机械性能的双功能方法","authors":"Z. Farrokhi, M. Kanvisi, Ali Ayati","doi":"10.1515/ipp-2023-4453","DOIUrl":null,"url":null,"abstract":"\n This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 21","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties\",\"authors\":\"Z. Farrokhi, M. Kanvisi, Ali Ayati\",\"doi\":\"10.1515/ipp-2023-4453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" 21\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4453\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties
This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.