海面温度变化的自相关和交叉相关多分形分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gyuchang Lim, Jong-Jin Park
{"title":"海面温度变化的自相关和交叉相关多分形分析","authors":"Gyuchang Lim, Jong-Jin Park","doi":"10.3390/fractalfract8040239","DOIUrl":null,"url":null,"abstract":"In this study, we investigate multiscale auto- and cross-correlation structural characteristics of sea surface temperature (SST) variability using our new methodology, called the multifractal asymmetric cross-correlation analysis (MF-ACCA), incorporating signs of a segment’s detrended covariance and linear trend. SST is greatly affected by air–sea interactions and the advection of water masses with a wide range of spatiotemporal scales. Since these force factors are imprinted on SST variability, their features can be revealed in terms of long-range auto- and cross-correlation structures of SST variability via a multifractal analysis. By applying the MF-ACCA methodology to SST variability in the East/Japan Sea, we have found the following features: (1) the auto- and cross-correlation multifractal features are dependent on several parameters, such as the location, linear trends (rising or falling), level of fluctuations, and temporal scales; (2) there are crossover behaviors that are discrete for small scales (less than 1000 days) but continuous for large scales (more than 1000 days); (3) long-range persistence of auto- and cross-correlations is random for large scales during the falling phase; (4) long-range persistence is stronger during the rising phase than during the falling phase; (5) the degree of asymmetry is greater for large scales than for small scales.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto- and Cross-Correlation Multifractal Analysis of Sea Surface Temperature Variability\",\"authors\":\"Gyuchang Lim, Jong-Jin Park\",\"doi\":\"10.3390/fractalfract8040239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate multiscale auto- and cross-correlation structural characteristics of sea surface temperature (SST) variability using our new methodology, called the multifractal asymmetric cross-correlation analysis (MF-ACCA), incorporating signs of a segment’s detrended covariance and linear trend. SST is greatly affected by air–sea interactions and the advection of water masses with a wide range of spatiotemporal scales. Since these force factors are imprinted on SST variability, their features can be revealed in terms of long-range auto- and cross-correlation structures of SST variability via a multifractal analysis. By applying the MF-ACCA methodology to SST variability in the East/Japan Sea, we have found the following features: (1) the auto- and cross-correlation multifractal features are dependent on several parameters, such as the location, linear trends (rising or falling), level of fluctuations, and temporal scales; (2) there are crossover behaviors that are discrete for small scales (less than 1000 days) but continuous for large scales (more than 1000 days); (3) long-range persistence of auto- and cross-correlations is random for large scales during the falling phase; (4) long-range persistence is stronger during the rising phase than during the falling phase; (5) the degree of asymmetry is greater for large scales than for small scales.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040239\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040239","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用新方法--多分形非对称交叉相关分析(MF-ACCA)--研究了海表温度(SST)变率的多尺度自相关和交叉相关结构特征,其中包括分段去趋势协方差和线性趋势的符号。海温受海气相互作用和水团平流的影响很大,时空尺度范围很广。由于这些影响因素对 SST 变率的影响很大,因此可以通过多分形分析揭示 SST 变率的长程自相关和交叉相关结构。通过对东海/日本海的 SST 变率应用 MF-ACCA 方法,我们发现了以下特征:(1) 自相关和交叉相关多分形特征取决于多个参数,如位置、线性趋势(上升或下降)、波动水平和时间尺度;(2) 小尺度(小于 1000 天)存在离散的交叉行为,而大尺度(大于 1000 天)则存在连续的交叉行为;(3) 在下降阶段,大尺度的自相关和交叉相关的长程持续性是随机的;(4) 上升阶段的长程持续性强于下降阶段;(5) 大尺度的不对称程度大于小尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto- and Cross-Correlation Multifractal Analysis of Sea Surface Temperature Variability
In this study, we investigate multiscale auto- and cross-correlation structural characteristics of sea surface temperature (SST) variability using our new methodology, called the multifractal asymmetric cross-correlation analysis (MF-ACCA), incorporating signs of a segment’s detrended covariance and linear trend. SST is greatly affected by air–sea interactions and the advection of water masses with a wide range of spatiotemporal scales. Since these force factors are imprinted on SST variability, their features can be revealed in terms of long-range auto- and cross-correlation structures of SST variability via a multifractal analysis. By applying the MF-ACCA methodology to SST variability in the East/Japan Sea, we have found the following features: (1) the auto- and cross-correlation multifractal features are dependent on several parameters, such as the location, linear trends (rising or falling), level of fluctuations, and temporal scales; (2) there are crossover behaviors that are discrete for small scales (less than 1000 days) but continuous for large scales (more than 1000 days); (3) long-range persistence of auto- and cross-correlations is random for large scales during the falling phase; (4) long-range persistence is stronger during the rising phase than during the falling phase; (5) the degree of asymmetry is greater for large scales than for small scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信