关于双广义古格里耶莫数的分析研究

Bahadır Yılmaz, Y. Soykan
{"title":"关于双广义古格里耶莫数的分析研究","authors":"Bahadır Yılmaz, Y. Soykan","doi":"10.9734/ajpas/2024/v26i4607","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the generalized dual hyperbolic Guglielmo numbers and then various special cases are explored (including dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal numbers). Binet's formulas, generating functions, and summation formulas for these numbers are presented. Additionally, Catalan's and Cassini's identities are provided, along with matrices associated with these sequences. Moreover, we give some identities and matrices related with these sequences.","PeriodicalId":502163,"journal":{"name":"Asian Journal of Probability and Statistics","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytical Study on Dual Generalized Guglielmo Numbers\",\"authors\":\"Bahadır Yılmaz, Y. Soykan\",\"doi\":\"10.9734/ajpas/2024/v26i4607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the generalized dual hyperbolic Guglielmo numbers and then various special cases are explored (including dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal numbers). Binet's formulas, generating functions, and summation formulas for these numbers are presented. Additionally, Catalan's and Cassini's identities are provided, along with matrices associated with these sequences. Moreover, we give some identities and matrices related with these sequences.\",\"PeriodicalId\":502163,\"journal\":{\"name\":\"Asian Journal of Probability and Statistics\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajpas/2024/v26i4607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2024/v26i4607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了广义对偶双曲古列尔莫数,然后探讨了各种特例(包括对偶三角形数、对偶三角形-卢卡斯数、对偶长方形数和对偶五边形数)。介绍了这些数的比奈公式、生成函数和求和公式。此外,我们还提供了加泰罗尼亚和卡西尼等式,以及与这些序列相关的矩阵。此外,我们还给出了与这些序列相关的一些等式和矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analytical Study on Dual Generalized Guglielmo Numbers
In this study, we investigate the generalized dual hyperbolic Guglielmo numbers and then various special cases are explored (including dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal numbers). Binet's formulas, generating functions, and summation formulas for these numbers are presented. Additionally, Catalan's and Cassini's identities are provided, along with matrices associated with these sequences. Moreover, we give some identities and matrices related with these sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信