Meng Wang, Yongjun Gao, Shaoyu Yuan, Jin Deng, Jie Yang, Jie Yan, Shixiang Yu, Bingjun Xu, Ding Ma
{"title":"混合塑料废物的完全氢解","authors":"Meng Wang, Yongjun Gao, Shaoyu Yuan, Jin Deng, Jie Yang, Jie Yan, Shixiang Yu, Bingjun Xu, Ding Ma","doi":"10.1038/s44286-024-00064-y","DOIUrl":null,"url":null,"abstract":"The accumulation of plastic waste in the environment has led to a global crisis with severe consequences for wildlife and ecosystems. Upcycling offers a promising solution for reducing plastic waste by converting it into valuable chemicals and fuels. Real-life plastic waste exists as complex mixtures of different types of plastic, which poses a key challenge for efficient upcycling. Here, by using sunlight as the sole energy source, we report a thermocatalytic approach for transforming a plastic waste mixture collected from daily usage into methane and HCl using an earth-abundant Ni-based catalyst. This process successfully converted 1.03 g of a plastic waste mixture, containing five types of polyolefin, polyester and polyvinyl chloride, into 1.08 g of methane (yieldC 98%) and 0.045 g of HCl (yieldCl 91%). Catalyst deactivation caused by chlorine poisoning is prevented through the temperature-ramped process driven by the diurnal sunlight cycle, ensuring sustained catalytic activity over a period of 10 days. Real-life plastic waste exists as complex mixtures, posing a challenge for efficient upcycling. Now a sunlight-powered thermocatalytic process using a Ni-based catalyst converts a plastic mixture into CH4, H2O and HCl. Notably, chlorine poisoning is minimized through temperature modulation driven by the diurnal sunlight cycle.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"376-384"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete hydrogenolysis of mixed plastic wastes\",\"authors\":\"Meng Wang, Yongjun Gao, Shaoyu Yuan, Jin Deng, Jie Yang, Jie Yan, Shixiang Yu, Bingjun Xu, Ding Ma\",\"doi\":\"10.1038/s44286-024-00064-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accumulation of plastic waste in the environment has led to a global crisis with severe consequences for wildlife and ecosystems. Upcycling offers a promising solution for reducing plastic waste by converting it into valuable chemicals and fuels. Real-life plastic waste exists as complex mixtures of different types of plastic, which poses a key challenge for efficient upcycling. Here, by using sunlight as the sole energy source, we report a thermocatalytic approach for transforming a plastic waste mixture collected from daily usage into methane and HCl using an earth-abundant Ni-based catalyst. This process successfully converted 1.03 g of a plastic waste mixture, containing five types of polyolefin, polyester and polyvinyl chloride, into 1.08 g of methane (yieldC 98%) and 0.045 g of HCl (yieldCl 91%). Catalyst deactivation caused by chlorine poisoning is prevented through the temperature-ramped process driven by the diurnal sunlight cycle, ensuring sustained catalytic activity over a period of 10 days. Real-life plastic waste exists as complex mixtures, posing a challenge for efficient upcycling. Now a sunlight-powered thermocatalytic process using a Ni-based catalyst converts a plastic mixture into CH4, H2O and HCl. Notably, chlorine poisoning is minimized through temperature modulation driven by the diurnal sunlight cycle.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 5\",\"pages\":\"376-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00064-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00064-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The accumulation of plastic waste in the environment has led to a global crisis with severe consequences for wildlife and ecosystems. Upcycling offers a promising solution for reducing plastic waste by converting it into valuable chemicals and fuels. Real-life plastic waste exists as complex mixtures of different types of plastic, which poses a key challenge for efficient upcycling. Here, by using sunlight as the sole energy source, we report a thermocatalytic approach for transforming a plastic waste mixture collected from daily usage into methane and HCl using an earth-abundant Ni-based catalyst. This process successfully converted 1.03 g of a plastic waste mixture, containing five types of polyolefin, polyester and polyvinyl chloride, into 1.08 g of methane (yieldC 98%) and 0.045 g of HCl (yieldCl 91%). Catalyst deactivation caused by chlorine poisoning is prevented through the temperature-ramped process driven by the diurnal sunlight cycle, ensuring sustained catalytic activity over a period of 10 days. Real-life plastic waste exists as complex mixtures, posing a challenge for efficient upcycling. Now a sunlight-powered thermocatalytic process using a Ni-based catalyst converts a plastic mixture into CH4, H2O and HCl. Notably, chlorine poisoning is minimized through temperature modulation driven by the diurnal sunlight cycle.