{"title":"论 2020 年 8 月 10 日艾奥瓦回旋中子午喷流和水平位势涡度偶极的作用","authors":"M. Hitchman, S. M. Rowe","doi":"10.1175/mwr-d-23-0168.1","DOIUrl":null,"url":null,"abstract":"\nOn 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m/s for ~ 20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostratic Modeling System (UWNMS) and of absolute vorticity in High Resolution Rapid Refresh (HRRR) forecast analyses.\nThis structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo.\nThe speed of propagation of the derecho is similar to the westerly wind maximum in the 3-5 km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole / northerly jet structure. Differences in this structure among three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 33","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Role of the Meridional Jet and Horizontal Potential Vorticity Dipole in the Iowa Derecho of 10 August 2020\",\"authors\":\"M. Hitchman, S. M. Rowe\",\"doi\":\"10.1175/mwr-d-23-0168.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nOn 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m/s for ~ 20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostratic Modeling System (UWNMS) and of absolute vorticity in High Resolution Rapid Refresh (HRRR) forecast analyses.\\nThis structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo.\\nThe speed of propagation of the derecho is similar to the westerly wind maximum in the 3-5 km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole / northerly jet structure. Differences in this structure among three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0168.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0168.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the Role of the Meridional Jet and Horizontal Potential Vorticity Dipole in the Iowa Derecho of 10 August 2020
On 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m/s for ~ 20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostratic Modeling System (UWNMS) and of absolute vorticity in High Resolution Rapid Refresh (HRRR) forecast analyses.
This structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo.
The speed of propagation of the derecho is similar to the westerly wind maximum in the 3-5 km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole / northerly jet structure. Differences in this structure among three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.